Reducing Memory Sharing
Cost for Virtualized
Infrastructures

Ryota Ozaki and Ahikiro Nakao
The University of Tokyo

2012-03-02

20m /5m

Background

e Increase the amount of memory

e Memory sharing techniques
o A technique to share/merge identical pages
o Increase virtual machine density
e Memory Scanning Cost
o The cost is proportional to the amount of memory

e Virtualized infrastructures
o Host machines cooperate over networks
o Virtual machines that stems from a common disk
image run on the host machines

Objective

e Reduce costs for memory sharing
o The number of pages to be scanned
o 1/O tracking and page states

e Reduce total resource consumptions of an

infrastructure
o Same procedures are reproduced over machines

Motivation v | (v) (o)

~ i
" WAN o
\g _--~"__~ Scanning memory and/or

merge pages with live
information on each node

We can analysis disk images before
Common distribution and send them with hints
disk image for reducing sharing cost

Related Work

e Content-based sharing

o Scanning & merging

o ex. VMware ESX, Difference Engine, KSM, Satori
e CoW disk

o Uses a knowledge that data from a shared read-only
CoW disk will be identical if not modified
o Track guest's I/0O requests and updates of memory
pages
o ex. Disco, Satori
o Our proposal supports the latter
o While the former can be used with ours

Design Decision

e Static analysis of disk images in advance
o The results can be applied to many virtualization
nodes
e Diversity of applications
o Their memory may not have much chances to be
merged
e Shared CoW disks and page caches are still

Important candidates to be merged
o Many researches agreed

e Merge pages in a backend block driver
o It can merge pages without data copy and interfering
guests

Static Analysis

e With running a pair of virtual machines, run

KSM for a while, and collect several data
and statistics
o # of merged pages
m Memory size
o Merged pages characteristics
m Zero-filled pages
® To merge them is not good idea

m Which pages are read from a disk image and
stay as they are (%)

e Sector number list

o Pages of (*) have a corresponding blocks on a disk
image

How to Use a Sector Number List?

e \We can preload a set of pages that
correspond to sector numbers
e By doing so, we can merge a page being
read from a guest to a preloaded one
o directly with low cost
m just check if the number exists

o without tracking a page lifecycle
s modified or not

How to Get a Sector Number List

. (block backend 1 G

: \ Host kernel
(sector, vaddr,
: i [MM][ksm]
| | | I
| | V |
\ | (vaddr, paddr) g
(sector,lhash) | : (paddr, hash)
I I |
—_——— - = — . J
v
sector
Implementation
e gemu-kvm-0.14.0
e linux-2.6.35.13 (support only EPT)
e crash-5.1
e analysis scripts
o bash/ruby/python and crash extension
e Modifications

o gemu-kvm: 1,500 LOC
o linux: 2,000 LOC
e analysis scripts

o bash/ruby/python: 1,000 LOC
o crash extension: 500 LOC

Implementation

e Page content server
o Preloads pages in accordance with a sector number
list
o Exports a hash table to quickly convert a sector
number to a virtual address of a page
m shm
e merge page(s) syscall
o called by gemu
Takes three arguments: pid, vaddr, vaddr
pid: of a page content server
vaddr. specifies a page in a page content server
vaddr: specifies a target page to be merged with a
page of vaddr

®)
@)
©)
@)

Page Content Server

-
Page Content Server 1
s A\
vaddr|-- - P29 shm gemu
page 2 Meta info Guest
page 3 pid, etc.
page 4 Hash table Disk /0 buffer
vaddr_ | (1page)
N
page N
Instead of
Preload|page : calling read(2)
content \ |

{sector => vaddr} | merge_page(pid, vaddr, vaddr)

Disk
Image ‘ Host kernel

Merging Pages

e We implement page merging facility based
on KSM

o It pus merged pages in KSM a RB tree
o We can run KSM as usual

e We also need to modify mm
o To prevent EPT violation (host page fault for guest)
from breaking merged pages

Security Concern

e merge page(s) has a potential to steel

arbitrary pages
e madvise(MADV_ALLOWMERGED)

o specifies a memory region where can be merged by
merge_page(s)
e A page content server uses this to expose

page contents to others
o Contents of a share CoW disk image are not usually
hidden

Evaluations

1. The time of a single syscall execution
o read vs. merge page

2. Overhead of our method

o Our method checks if merge-able or not for every 1/0O
requests

3. CPU and memory usage

® Comparison with KSM

e Our method also runs KSM but it scans only non-
zero pages

Execution time

e Compare our syscall with read syscall
O merge 1 page vs. read 4 Kbytes
O the average of one thousand repetition

read 1.60 ps
merge_page 0.17 s

e Faster than read syscall because no data
Copy Is necessary

Overhead (worst case)

e |ssues I/O requests which cannot be merge

by our method at all
o Overhead here is a cost to check if pages in
question are merge-able

Single request | Elapsed time of
from a block grep in a guest
driver of gemu
w/o our method 14.1 ys 6.57 sec.
w/ our method 14.5 ys 6.69 sec.
Overhead 2.8 % 1.8 %
CPU and Memory Usage
1.8 F
1
1.6 | 7~
14 r | —
| 4 0.8 ©
12 | ©
m | =
= .l , <
> 1 — csmd ticks ——28 =
g SUN)Z uest usage +—— o
g 08 r smaps sharedfclean(sum) = g
o6 | - pss (sum) 0.4 5
O
0.4 F
4 0.2
0.2
0 0
0 2 4 6 8 10 12

Periods (min.)

CPU and Memory Usage

18
1 1
16 ~
|HI
14 | —_
| 4 0.8)
| o
D 1.2 | o
G]| o
o 1k : kemd ficke —+—0.6 X
. Sum of guest usage +—— o
E 08 | @
@ : smaps shared clean(sum) — ©
= 06 pss (sum) w/ memmap o4 3
2T a
pss (sum) o
0.4
4 0.2
0.2]
0 1 1 1 1 1 1 0
0 2 4 6 8 10 12
Periods (min.)

e Our contributions
o We proposed that static analysis of disk images is
useful to support efficient memory merging facilities
o We designed and implemented prototype to
demonstrate our proposal
o Experimental results have shown that using a sector
number list and a page content server can reduce
CPU consumptions to merge pages
e Future work
o We will explore another usages of static analysis of
disk images
m Dynamic analysis and feedback loop

