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Abstract We propose a new kind of P2P traffic control technique, called Netpherd exploiting the peer selection adaptation 
(i.e., preferring the peers who are likely to provide better performance). Netpherd tries to enable the peers to communicate with 
the peers of the local domain by affecting the peer selection adaptation through manipulating network performance (i.e., 
adding artificial delay at network device like router). Simulation results show that Netpherd can increases (decreases) the 
intra-domain (inter-domain) traffic by affecting the peer selection adaptation. Netpherd also improves the content download 
performance including the number of download completions, which means Netpherd can satisfy both the network operator and 
the peers.  
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1. Introduction 

 
To control P2P traffic, a bilateral approach based 

on the collaboration between the network operator 
and the peers has been proposed [1]-[8]. In this 
approach, the peers select their partners by following 
a guidance provided by the network operator so that 
some of inter-domain traffic may be redirected 
within a local domain. This approach is regarded as 
a promising way, since it can satisfy both the 
network operator and the peers. However, there are 
several practical issues to be satisfied for successful 
deployment [9]. For example, the bilateral approach 
requires a dedicated server to provide the guidance 
and a modification of P2P applications to reflect the 
guidance, which makes a real deployment difficult. 

In this paper, we try to satisfy both the network 
operator and the peers by exploiting the peer 
selection adaptation (i.e., preferring the peers who 
are likely to provide better networking performance 
than others). For example, with the peer selection 
adaptation, BitTorrent client [10] exchanges content 
preferentially with other peers who have uploaded 
content to itself in the past at high bandwidth. 
Therefore, we posit that we can turn the 
inter-domain traffic into the intra-domain traffic if 
we can degrade the network performance across 
network domains. For this, we propose a P2P traffic 
control approach through network performance 
manipulation, called Netpherd. Netpherd tries to 

enable the peers to communicate with peers of the 
local domain by decreasing the network performance 
across network domains. To manipulate the network 
performance, Netpherd adds an artificial delay to the 
inter-domain traffic at network device. Netpherd 
does not require the dedicated server and the 
modification of P2P applications.  

Through simulations, we show that Netpherd 
reduces the inter-domain traffic while increasing the 
intra-domain traffic in most cases. It means that the 
network performance manipulation enables the peers 
to communicate with the peers of the local domain. 
By examining the change of peer selection behavior 
(i.e., a number of unchokings), we confirm this. 
Netpherd also increases the number of download 
completions and decreases the download completion 
time.  

 

Figure 1. Conceptual illustration of Netpherd. 



 

 

 
Figure 2. Scalable crawling of .torrent files and peer 

addresses. 

 
2. P2P Traffic Control through Network 
Performance Manipulation 

 
In BitTorrent, with its peer selection adaptation 

technique called tit-for-tat, the peer allocates its 
upload slots (i.e., unchokes) to the peers who have 
uploaded content to itself in the past at high 
bandwidth periodically. Netpherd tries to affect the 
peer selection adaptation to redirect the inter-domain 
traffic within the local domain by adding the 
artificial delay to the target traffic. Netpherd 
consists of three components: the crawler, the 
selector, and the manipulator (Fig. 1). The crawler 
collects information of swarms and peers staying in 
target network domain. Then, the selector determines 
target swarms and peers to be controlled. The 
selector also generates a policy for the performance 
manipulation (e.g., amount of artificial delay). 
Finally, the manipulator detects the target traffic and 
adds the artificial delay to the target traffic.  

 

2.1 Crawler 
 
Netpherd first collects information of swarms and 

peers (Fig. 2). 
Crawling .torrent files. To collect the swarm 

information, we need to collect .torrent file. Our 
crawler uses a .torrent storage server [16] instead of 
WEB site that is used by conventional approach [13]. 
A .torrent storage server is the server specialized in 
storing and redistributing .torrent files. A peer can 
download a specific .torrent file with a URL that 
includes its identifier. To collect as many identifier 
of .torrent files as possible, our crawler uses a 

 
Figure 3. Manipulator: detector and delayer. 

 
Scrape-ALL [11] request. Then, the crawler 
downloads .torrent files from the .torrent storage 
server after extracting unique identifiers among the 
downloaded identifiers. 

Crawling peer addresses. With the 
crawled .torrent files, the crawler collects IP address 
and port number of peers to know the number of 
peers staying in the target network domain. Unlike 
conventional approach accessing all trackers listed 
in .torrent files, our crawler contacts only one 
representative tracker in each swarm to efficiently 
obtain peer addresses, since 90% of swarms are 
managed by multiple trackers (4.82 on average) [12].  
We define a representative tracker as the tracker that 
maintains the maximum number of peers in a swarm. 
After selecting the representative tracker, the 
crawler contacts the tracker periodically as the 
conventional approach does (i.e., the crawler repeats 
collecting a random subset until no more new peers 
can be discovered from the tracker). Additional 
information about our crawling is described in [12].  

 
2.2 Selector 
 
The selector determines the target traffic to be 

controlled and generates a policy for the 
performance manipulation. The selector describes 
the target traffic with the swarm ID (i.e., .torrent 
identifier), IP address, and port number of target 
peer. The selection of target swarms, peers, and 
corresponding artificial delay needs to enough to 
satisfy both parties. For example, a swarm with more 
than certain number of local peers can be selected. 
However, in this paper, we do not propose any 
specific approaches for the selector including the 



 

 

 
Figure 4. Implementation of delayer. 

 
selection of swarms, since we believe that each 
network operator has its own selection criteria based 
on its traffic engineering policy. 

 
2.3 Manipulator 
 
The manipulator detects the target traffic and 

adds the artificial delay to the target traffic (Fig. 3). 
The manipulator consists of the traffic detector and 
the delayer. For the traffic detector, Netpherd can 
utilize existing deep packet inspection (DPI) tools 
[17], [18]. We believe that the detector can easily 
detect the target traffic, since the selector clarifies 
the swarm ID, IP address, and port number of the 
target peer.  

The delayer can be implemented as follows (Fig. 
4). (a) Buffering by edge routers. One obvious 
approach to add the artificial delay is to buffer 
packets at the edge router. This would require large 
buffers, making the router expensive and power 
inefficient [14]. The edge router also needs complex 
packet scheduling mechanisms. 
(b) Use of external device. We may be able to 
utilize some external devices such as network 
emulator [19], [20] that can be attached to the edge 
router. This approach does not require the large 
buffer at the router and the modification of router. 
But, performance under real traffic load is 
questionable. 
(c) Redirecting packet through routers. The edge 
router can redirect the target traffic through the 
routers of the local domain [15]. Edge routers 
monitor the end-to-end delay to other routers, so that 
the edge router can determine appropriate router for 
the traffic redirection. This approach requires one  

  Table I Inter-AS Delay of Target AS 
Simulation time (sec) Delay (msec) 

0 – 500 100 
500 – 1000 100 + 100 

1000 – 1500 100 
1500 – 2000 100 + 200 
2000 – 2500 100 
2500 – 3000 100 + 300 
3000 – 3500 100 
3500 – 4000 100 + 400 
4000 – 4500 100 
4500 - 5000 100 + 900 

 
centralized server selecting and managing a set of 
routers for the packet redirection. 
 
3. Performance Evaluation 

 
3.1 Simulation Setup 
 
Here, we focus on how the artificial delay affects 

the peer selection adaptation, the traffic volume, and 
the content download performance. For this, we 
measured BitTorrent swarms through our crawler 
before the simulation. Among the swarms measured 
by the crawler, we randomly select 1 swarm 
including 861 seeders and 10,703 leechers. The peers 
are distributed over 416 ASes. And we build the 
simulation environment based on ns-2 [21] as 
follows. BitTorrent tracker returns 50 peers and 
250MB-sized content is shared. Each peer has the 
same link capacity (i.e., 120KB/s for download and 
40KB/s for upload) and 5 upload slots including one 
optimistic unchoking slot. The delayer is 
implemented at routers with a buffer of unlimited 
size. We set 50ms for a delay of intra-AS link and 
100ms for a delay of inter-AS link. During 
simulations, we add the artificial delay to the 
inter-AS link every 500 seconds as shown in Table I. 
After increasing the delay for one interval, then we 
reset the delay to the first delay value for next  
interval to examine what happens when the artificial 
delay is eliminated. To study an effect of amount of 
artificial delay, different amount of delay is added. 
We select 7 peer-intensive ASes 283 seeders and 
3,152 leechers (INT_AS) and 10 peer-scarce ASes 
10 seeders and 178 leechers (SCA_AS) to examine 
what happens in ASes with different number of peers 
when the artificial delay is added. We define 
NON_AS as non-INT_AS including SCA_AS. For 
performance comparison, we add the artificial delay 



 

 

to all inter-AS traffic (NP_ALL) or to inter-AS 
traffic of INT_AS (NP_IN). We also include NNP as 
a base case where no artificial delay is added. 

 
3.2 Traffic Volume 
 
We first examine how the artificial delay affects 

the download throughput. In the collection of all AS, 
NP_ALL increases the total traffic volume slightly 
and NP_IN shows similar total traffic volume 
compared to NNP (Fig. 5(a)). NP_ALL and NP_IN 
increase the intra-domain traffic and decrease the 
inter-domain traffic over compared to NNP ((Fig. 
5(b) and Fig. 5(c)). In NP_ALL case, the increased 
intra-domain traffic is slightly larger than the 

decreased inter-domain traffic and thus this results 
in the increased total traffic volume. On the other 
hand, NP_IN shows similar amount of change in the 
intra-domain and the inter-domain traffic and thus 
there is no noticeable change in the total traffic 
volume. However, if the artificial delay is too long 
(i.e., 900ms in our simulations), the decreased 
inter-domain traffic volume becomes larger than the 
increased intra-domain traffic volume, which results 
in the reduced total traffic volume in both NP_ALL 
and NP_IN. When the artificial delay is eliminated, 
NNP, NP_ALL, and NP_IN show similar traffic 
volume. It means that the peers communicate with its 
neighboring peers as they do before the performance 
manipulation when Netpherd stops adding the delay. 

 
             (a) Total traffic                     (b) Intra-domain traffic                 (c) Inter-domain traffic 

Figure 7. Traffic volume (SCA_AS) 
 

 
           (a) Total traffic                     (b) Intra-domain traffic                 (c) Inter-domain traffic 

Figure 5. Traffic volume (all AS) 

 
           (a) Total traffic                     (b) Intra-domain traffic                 (c) Inter-domain traffic 

Figure 6. Traffic volume (INT_AS) 
 



 

 

NP_IN shows noticeable change in the 
intra-domain and the inter-domain traffic (Fig. 5(b) 
and Fig. 5(c)). It means that we may be able to 
achieve the attractive results by just manipulating 
few ASes with many peers. INT_AS shows better 
performance improvement than others (Fig 6), since 
many peers of INT_AS know some peers of the same 
AS as their neighboring peers (Fig. 8). Except 
INT_AS, more than 50% of peers do not know any 
peers of the same AS as the neighboring peers. On 
the other hand, most peers of INT_AS have the peers 
of the same AS as the neighboring peers up to 15. 
NP_ALL increases total traffic slightly compared to 
NNP (Fig 6(a)). On the other hand, NP_IN decreases 
total traffic compared to NNP. NP_IN and NP_ALL 
show similar increase in the intra-domain traffic (Fig 
6(b)), but NP_IN shows much decreased 
inter-domain traffic compared to NP_ALL (Fig 6(c)). 
The decreased inter-domain traffic is larger than the 
increased intra-domain traffic and thus this leads to 
the reduced total traffic in NP_IN.  

On the other hand, SCA_AS decreases the total 
traffic volume slightly when the artificial delay is 
added in both NP_ALL and NP_IN (Fig 7). Actually, 
97% of SCA_AS peers do not know any peers of the 
same AS as the neighboring peers (Fig. 8). Therefore, 
most peers face the decreased download performance, 
since there is only decrease in the inter-domain 
traffic.  

3.3 Peer Selection Adaptation 
 
Now, we examine how the artificial delay affects 

the peer selection behavior. We select one AS of 
INT_AS that includes 66 seeders and 800 leechers. 
When the artificial delay is added, the number of 
unchokings for peers of the same AS increases in 
both NP_ALL and NP_IN (Fig. 9), since most peers 
of INT_AS have the peers of the same AS as the 
neighboring peers (Fig. 8). NP_IN shows more 
number of unchokings within the same AS than 
NP_ALL. On the other hand, in SCA_AS, we do not 
observe any noticeable change (Fig. 9(c)).  

 

 

Figure 8. Distribution of number of neighboring peers 
of the same AS. 

 

 
(a) Unchokings within the same AS (INT_AS)      (b) Unchokings across ASes (INT_AS)  (c) Unchokings within the same AS (SCA_AS) 

Figure 9. Peer unchokings behaviors with the artificial delay. 
 

Table II Download Performance 
 Number of download completions Average download time (sec) 
 NNP NP_ALL NP_IN NNP NP_ALL NP_IN 

All AS 144 245 287 4746 4700 4779 
INT_AS 83 148 96 4753 4592 4730 
SCA_AS 0 2 4 None 4936 4910 

 



 

 

3.4 Download Completion Time 
 
Table II shows the number of download 

completions and the average download completion 
time. With NP_ALL and NP_IN, the peers begin to 
complete the content download earlier than the peers 
with NNP. But, NP_IN shows longer average 
download completion time than NNP, since many 
peers complete the download later than the peers 
with NNP. One interesting observation is that 
INT_AS with NP_IN shows better download 
performance (i.e., the increased number of download 
completions) than INT_AS with NNP. We find that 
the network performance manipulation affects the 
download throughput of peers in different ways. For 
example, a peer who knows peers of the same AS as 
the neighboring peers improves the download 
throughput, since the increased intra-domain traffic 
is usually larger than the decreased inter-domain 
traffic. On the other hand, a peer who does not know 
peers of the same AS decreases the download 
throughput, since there is only the decreased 
inter-domain traffic.  

 
4. Conclusion 
 
The peer selection adaptation is another potential 

chance for P2P traffic control. Netpherd exploits the 
peer selection adaptation to enable the peers to 
communicate with the peers of the local domain by 
adding the artificial delay to the target traffic. The 
feasibility of the P2P traffic control through the 
network performance manipulation is verified 
through the simulations with the real trace of 
BitTorrent swarms. In particular, the simulation 
results show that Netpherd can really affect the peer 
selection adaptation by manipulating the networking 
performance. The results also confirm that enough 
number of peers within the local domain is one of 
the key factors for successful traffic localization. 
After extending our design as we mentioned, we plan 
to implement Netpherd in Internet environment. 
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