

THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE
INFORMATION AND COMMUNICATION ENGINEERS

On Feasibility of P2P Traffic Control through Network Performance
Manipulation

HyunYong Lee† Masahiro Yoshida‡ and Akihiro Nakao‡

† National Institute of Information and Communications Technology (NICT), Tokyo, Japan
‡The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan

E-mail: † ifjesus7@gmail.com, ‡ yoshida@nakao-lab.org, nakao@iii.u-tokyo.ac.jp

Abstract We propose a new kind of P2P traffic control technique, called Netpherd exploiting the peer selection adaptation
(i.e., preferring the peers who are likely to provide better performance). Netpherd tries to enable the peers to communicate with
the peers of the local domain by affecting the peer selection adaptation through manipulating network performance (i.e.,
adding artificial delay at network device like router). Simulation results show that Netpherd can increases (decreases) the
intra-domain (inter-domain) traffic by affecting the peer selection adaptation. Netpherd also improves the content download
performance including the number of download completions, which means Netpherd can satisfy both the network operator and
the peers.

Keyword P2P traffic control, Peer selection adaptation, Network performance manipulation

1. Introduction

To control P2P traffic, a bilateral approach based

on the collaboration between the network operator
and the peers has been proposed [1]-[8]. In this
approach, the peers select their partners by following
a guidance provided by the network operator so that
some of inter-domain traffic may be redirected
within a local domain. This approach is regarded as
a promising way, since it can satisfy both the
network operator and the peers. However, there are
several practical issues to be satisfied for successful
deployment [9]. For example, the bilateral approach
requires a dedicated server to provide the guidance
and a modification of P2P applications to reflect the
guidance, which makes a real deployment difficult.

In this paper, we try to satisfy both the network
operator and the peers by exploiting the peer
selection adaptation (i.e., preferring the peers who
are likely to provide better networking performance
than others). For example, with the peer selection
adaptation, BitTorrent client [10] exchanges content
preferentially with other peers who have uploaded
content to itself in the past at high bandwidth.
Therefore, we posit that we can turn the
inter-domain traffic into the intra-domain traffic if
we can degrade the network performance across
network domains. For this, we propose a P2P traffic
control approach through network performance
manipulation, called Netpherd. Netpherd tries to

enable the peers to communicate with peers of the
local domain by decreasing the network performance
across network domains. To manipulate the network
performance, Netpherd adds an artificial delay to the
inter-domain traffic at network device. Netpherd
does not require the dedicated server and the
modification of P2P applications.

Through simulations, we show that Netpherd
reduces the inter-domain traffic while increasing the
intra-domain traffic in most cases. It means that the
network performance manipulation enables the peers
to communicate with the peers of the local domain.
By examining the change of peer selection behavior
(i.e., a number of unchokings), we confirm this.
Netpherd also increases the number of download
completions and decreases the download completion
time.

Figure 1. Conceptual illustration of Netpherd.

Figure 2. Scalable crawling of .torrent files and peer

addresses.

2. P2P Traffic Control through Network
Performance Manipulation

In BitTorrent, with its peer selection adaptation

technique called tit-for-tat, the peer allocates its
upload slots (i.e., unchokes) to the peers who have
uploaded content to itself in the past at high
bandwidth periodically. Netpherd tries to affect the
peer selection adaptation to redirect the inter-domain
traffic within the local domain by adding the
artificial delay to the target traffic. Netpherd
consists of three components: the crawler, the
selector, and the manipulator (Fig. 1). The crawler
collects information of swarms and peers staying in
target network domain. Then, the selector determines
target swarms and peers to be controlled. The
selector also generates a policy for the performance
manipulation (e.g., amount of artificial delay).
Finally, the manipulator detects the target traffic and
adds the artificial delay to the target traffic.

2.1 Crawler

Netpherd first collects information of swarms and

peers (Fig. 2).
Crawling .torrent files. To collect the swarm

information, we need to collect .torrent file. Our
crawler uses a .torrent storage server [16] instead of
WEB site that is used by conventional approach [13].
A .torrent storage server is the server specialized in
storing and redistributing .torrent files. A peer can
download a specific .torrent file with a URL that
includes its identifier. To collect as many identifier
of .torrent files as possible, our crawler uses a

Figure 3. Manipulator: detector and delayer.

Scrape-ALL [11] request. Then, the crawler
downloads .torrent files from the .torrent storage
server after extracting unique identifiers among the
downloaded identifiers.

Crawling peer addresses. With the
crawled .torrent files, the crawler collects IP address
and port number of peers to know the number of
peers staying in the target network domain. Unlike
conventional approach accessing all trackers listed
in .torrent files, our crawler contacts only one
representative tracker in each swarm to efficiently
obtain peer addresses, since 90% of swarms are
managed by multiple trackers (4.82 on average) [12].
We define a representative tracker as the tracker that
maintains the maximum number of peers in a swarm.
After selecting the representative tracker, the
crawler contacts the tracker periodically as the
conventional approach does (i.e., the crawler repeats
collecting a random subset until no more new peers
can be discovered from the tracker). Additional
information about our crawling is described in [12].

2.2 Selector

The selector determines the target traffic to be

controlled and generates a policy for the
performance manipulation. The selector describes
the target traffic with the swarm ID (i.e., .torrent
identifier), IP address, and port number of target
peer. The selection of target swarms, peers, and
corresponding artificial delay needs to enough to
satisfy both parties. For example, a swarm with more
than certain number of local peers can be selected.
However, in this paper, we do not propose any
specific approaches for the selector including the

Figure 4. Implementation of delayer.

selection of swarms, since we believe that each
network operator has its own selection criteria based
on its traffic engineering policy.

2.3 Manipulator

The manipulator detects the target traffic and

adds the artificial delay to the target traffic (Fig. 3).
The manipulator consists of the traffic detector and
the delayer. For the traffic detector, Netpherd can
utilize existing deep packet inspection (DPI) tools
[17], [18]. We believe that the detector can easily
detect the target traffic, since the selector clarifies
the swarm ID, IP address, and port number of the
target peer.

The delayer can be implemented as follows (Fig.
4). (a) Buffering by edge routers. One obvious
approach to add the artificial delay is to buffer
packets at the edge router. This would require large
buffers, making the router expensive and power
inefficient [14]. The edge router also needs complex
packet scheduling mechanisms.
(b) Use of external device. We may be able to
utilize some external devices such as network
emulator [19], [20] that can be attached to the edge
router. This approach does not require the large
buffer at the router and the modification of router.
But, performance under real traffic load is
questionable.
(c) Redirecting packet through routers. The edge
router can redirect the target traffic through the
routers of the local domain [15]. Edge routers
monitor the end-to-end delay to other routers, so that
the edge router can determine appropriate router for
the traffic redirection. This approach requires one

 Table I Inter-AS Delay of Target AS
Simulation time (sec) Delay (msec)

0 – 500 100
500 – 1000 100 + 100

1000 – 1500 100
1500 – 2000 100 + 200
2000 – 2500 100
2500 – 3000 100 + 300
3000 – 3500 100
3500 – 4000 100 + 400
4000 – 4500 100
4500 - 5000 100 + 900

centralized server selecting and managing a set of
routers for the packet redirection.

3. Performance Evaluation

3.1 Simulation Setup

Here, we focus on how the artificial delay affects

the peer selection adaptation, the traffic volume, and
the content download performance. For this, we
measured BitTorrent swarms through our crawler
before the simulation. Among the swarms measured
by the crawler, we randomly select 1 swarm
including 861 seeders and 10,703 leechers. The peers
are distributed over 416 ASes. And we build the
simulation environment based on ns-2 [21] as
follows. BitTorrent tracker returns 50 peers and
250MB-sized content is shared. Each peer has the
same link capacity (i.e., 120KB/s for download and
40KB/s for upload) and 5 upload slots including one
optimistic unchoking slot. The delayer is
implemented at routers with a buffer of unlimited
size. We set 50ms for a delay of intra-AS link and
100ms for a delay of inter-AS link. During
simulations, we add the artificial delay to the
inter-AS link every 500 seconds as shown in Table I.
After increasing the delay for one interval, then we
reset the delay to the first delay value for next
interval to examine what happens when the artificial
delay is eliminated. To study an effect of amount of
artificial delay, different amount of delay is added.
We select 7 peer-intensive ASes 283 seeders and
3,152 leechers (INT_AS) and 10 peer-scarce ASes
10 seeders and 178 leechers (SCA_AS) to examine
what happens in ASes with different number of peers
when the artificial delay is added. We define
NON_AS as non-INT_AS including SCA_AS. For
performance comparison, we add the artificial delay

to all inter-AS traffic (NP_ALL) or to inter-AS
traffic of INT_AS (NP_IN). We also include NNP as
a base case where no artificial delay is added.

3.2 Traffic Volume

We first examine how the artificial delay affects

the download throughput. In the collection of all AS,
NP_ALL increases the total traffic volume slightly
and NP_IN shows similar total traffic volume
compared to NNP (Fig. 5(a)). NP_ALL and NP_IN
increase the intra-domain traffic and decrease the
inter-domain traffic over compared to NNP ((Fig.
5(b) and Fig. 5(c)). In NP_ALL case, the increased
intra-domain traffic is slightly larger than the

decreased inter-domain traffic and thus this results
in the increased total traffic volume. On the other
hand, NP_IN shows similar amount of change in the
intra-domain and the inter-domain traffic and thus
there is no noticeable change in the total traffic
volume. However, if the artificial delay is too long
(i.e., 900ms in our simulations), the decreased
inter-domain traffic volume becomes larger than the
increased intra-domain traffic volume, which results
in the reduced total traffic volume in both NP_ALL
and NP_IN. When the artificial delay is eliminated,
NNP, NP_ALL, and NP_IN show similar traffic
volume. It means that the peers communicate with its
neighboring peers as they do before the performance
manipulation when Netpherd stops adding the delay.

 (a) Total traffic (b) Intra-domain traffic (c) Inter-domain traffic

Figure 7. Traffic volume (SCA_AS)

 (a) Total traffic (b) Intra-domain traffic (c) Inter-domain traffic

Figure 5. Traffic volume (all AS)

 (a) Total traffic (b) Intra-domain traffic (c) Inter-domain traffic

Figure 6. Traffic volume (INT_AS)

NP_IN shows noticeable change in the
intra-domain and the inter-domain traffic (Fig. 5(b)
and Fig. 5(c)). It means that we may be able to
achieve the attractive results by just manipulating
few ASes with many peers. INT_AS shows better
performance improvement than others (Fig 6), since
many peers of INT_AS know some peers of the same
AS as their neighboring peers (Fig. 8). Except
INT_AS, more than 50% of peers do not know any
peers of the same AS as the neighboring peers. On
the other hand, most peers of INT_AS have the peers
of the same AS as the neighboring peers up to 15.
NP_ALL increases total traffic slightly compared to
NNP (Fig 6(a)). On the other hand, NP_IN decreases
total traffic compared to NNP. NP_IN and NP_ALL
show similar increase in the intra-domain traffic (Fig
6(b)), but NP_IN shows much decreased
inter-domain traffic compared to NP_ALL (Fig 6(c)).
The decreased inter-domain traffic is larger than the
increased intra-domain traffic and thus this leads to
the reduced total traffic in NP_IN.

On the other hand, SCA_AS decreases the total
traffic volume slightly when the artificial delay is
added in both NP_ALL and NP_IN (Fig 7). Actually,
97% of SCA_AS peers do not know any peers of the
same AS as the neighboring peers (Fig. 8). Therefore,
most peers face the decreased download performance,
since there is only decrease in the inter-domain
traffic.

3.3 Peer Selection Adaptation

Now, we examine how the artificial delay affects

the peer selection behavior. We select one AS of
INT_AS that includes 66 seeders and 800 leechers.
When the artificial delay is added, the number of
unchokings for peers of the same AS increases in
both NP_ALL and NP_IN (Fig. 9), since most peers
of INT_AS have the peers of the same AS as the
neighboring peers (Fig. 8). NP_IN shows more
number of unchokings within the same AS than
NP_ALL. On the other hand, in SCA_AS, we do not
observe any noticeable change (Fig. 9(c)).

Figure 8. Distribution of number of neighboring peers
of the same AS.

(a) Unchokings within the same AS (INT_AS) (b) Unchokings across ASes (INT_AS) (c) Unchokings within the same AS (SCA_AS)

Figure 9. Peer unchokings behaviors with the artificial delay.

Table II Download Performance
 Number of download completions Average download time (sec)
 NNP NP_ALL NP_IN NNP NP_ALL NP_IN

All AS 144 245 287 4746 4700 4779
INT_AS 83 148 96 4753 4592 4730
SCA_AS 0 2 4 None 4936 4910

3.4 Download Completion Time

Table II shows the number of download

completions and the average download completion
time. With NP_ALL and NP_IN, the peers begin to
complete the content download earlier than the peers
with NNP. But, NP_IN shows longer average
download completion time than NNP, since many
peers complete the download later than the peers
with NNP. One interesting observation is that
INT_AS with NP_IN shows better download
performance (i.e., the increased number of download
completions) than INT_AS with NNP. We find that
the network performance manipulation affects the
download throughput of peers in different ways. For
example, a peer who knows peers of the same AS as
the neighboring peers improves the download
throughput, since the increased intra-domain traffic
is usually larger than the decreased inter-domain
traffic. On the other hand, a peer who does not know
peers of the same AS decreases the download
throughput, since there is only the decreased
inter-domain traffic.

4. Conclusion

The peer selection adaptation is another potential

chance for P2P traffic control. Netpherd exploits the
peer selection adaptation to enable the peers to
communicate with the peers of the local domain by
adding the artificial delay to the target traffic. The
feasibility of the P2P traffic control through the
network performance manipulation is verified
through the simulations with the real trace of
BitTorrent swarms. In particular, the simulation
results show that Netpherd can really affect the peer
selection adaptation by manipulating the networking
performance. The results also confirm that enough
number of peers within the local domain is one of
the key factors for successful traffic localization.
After extending our design as we mentioned, we plan
to implement Netpherd in Internet environment.

References

[1] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and
A. Silberschatz, “P4P: Portal for (P2P)
applications,” in Proc. of ACM SIGCOMM,
2008.

[2] V. Aggarwal, A. Feldmann, and C. Scheideler,
“Can isps and p2p users cooperate for improved

performance?,” SIGCOMM CCR, vol. 37, no. 3,
2007.

[3] D. Saucez, B. Connet, and O. Bonaventure,
“Implementation and preliminary evaluation of
an isp-driven informed peer selection,” in Proc.
of ACM CoNEXT, 2007.

[4] D. Choffnes and F. Bustamante, “Taming the
torrent: A practical approach to reducing
cross-ISP traffic in peer-to-peer systems,” in
Proc. of ACM SIGCOMM, 2008.

[5] C. H. Hsu and M. Hefeeda, “ISP-friendly peer
matching without ISP collaboration,” in Proc. of
ROADS Workshop, 2008.

[6] HyunYong Lee, Akihiro Nakao, and JongWon
Kim, “BiCo: Network operator-friendly p2p
traffic control through bilateral cooperation
with peers,” in Computer Networks, vol. 55,
issue 9, June, 2011.

[7] F. Lehrieder, S. Oechsner, To. Hobfeld, D.
Staehle, Z. Despotovic, and W. Kellerer,
“Mitigating unfairness in locality-aware
peer-to-peer networks,” in International Journal
of Network Management, vol. 21, issue 1, 2011.

[8] J. Seedorf, S. Niccolini, M. Stiemerling, E.
Ferranti, and R. Winter, “Quantifying
operational cost-savings through alto-guidance
for p2p live streaming,” in Proc. of
International Conference on Incentive, Overlays,
and Economic Traffic Control, 2010.

[9] S. L. Blond, A. Legout, and W. Dabbous,
“Pushing bittorrent locality to the limit,” in
Computer Networks, vol. 55, issue 3, 2011.

[10] J. Seedorf and E. Burger,
“Application-layer traffic optimization (ALTO)
problem statement,” Internet Engineering Task
Force, RFC5693, 2009.

[11] B. Cohen, “Incentives build robustness in
bittorrent,” in Proc. of P2PEcon, 2003.

[12] G. Dan and N. Carlsson, “Dynamic swarm
management for improved bittorrent
performance,” in Proc. of IPTPS, 2009.

[13] Masahiro Yoshida and Akihiro Nakao, “A
resource-efficient method for crawling swarm
information in multiple bittorrent networks,” in
Proc. of AHSP, 2011.

[14] S. Iyer, R. Zhang, and N. McKeown,
“Routers with a single stage of buffering,” in
Proc. of ACM SIGCOMM, 2002.

[15] M. Yu, M. Thottan, and L. Li, “Latency
equalization as a new network service
primitive,” IEEE/ACM Transactions on
Networking, 2011.

[16] Torrage, Torrent storage cache,
http://www.torrage.com/.

[17] IPOQUE, http://www.ipoque.com/.
[18] SANDVINE, http://www.sandvine.com/.
[19] Dummynet, http://info.iet.unipi.it/

luigi/dummynet/.
[20] NIST Net,

http://www.antd.nist.gov/tools/nistnet/index.htm
l/.

[21] The Network Simulator ns-2,
http://www.isi.edu/nsnam/ns/.

