
EMNLP2016参加報告

第3回⾃自然⾔言語処理理シンポジウム
2016/12/21

東北北⼤大学 ⾼高瀬翔

1

EMNLP2016にNN関連の論論⽂文は  
どの程度度あったのか？

2

2 Copyright©2015 NTT corp. All Rights Reserved.

“neural”, “lstm”, “recursive”, “rnn”, “recurrent”,
 “cnn”, “convolution”, “dnn”, “deep”,

“embedding”, “distributed representation”

70件/312
次の用語をタイトルに含む論文数 in EMNLP 2015

増村さんのEMNLP2015参加報告
と同じ解析をしてみる
NAACL2016では

NAACL-HLT 2016参加報告 [鈴鈴⽊木] より
71 / 182

EMNLP2016では

92 / 264
= 34.8%

基礎解析（統語解析など）から
応⽤用（機械翻訳など）まで
様々なタスクでニューラルが活躍

ニューラルネットを⽤用いた⾃自然⾔言語⽣生成の研究を紹介

ニューラルネットを⽤用いた 
⾃自然⾔言語⽣生成

•  Sequence-to-sequence（seq2seq） [Sutskever+ 14]
が主流流
–  ⼊入⼒力力-出⼒力力対を変えることで様々なタスクに適⽤用可能

 　

3

エンコーダ
⼊入⼒力力の系列列を固定⻑⾧長の
ベクトルにエンコード

デコーダ
固定⻑⾧長ベクトルから
系列列へデコード

where is my cat <BOS>

où est ma chatte

où est ma
翻訳
要約
対話

原⾔言語（e.g., 英語）
ソース⽂文
発⾔言

⽬目的⾔言語（e.g., フランス語）
要約⽂文
応答

EMNLP2016における 
seq2seqモデルの改良良

4

エンコーダの改良良
•  ⼊入⼒力力⽂文の意味的／統語的情報を
エンコードして利利⽤用 [Takase+]

where is my cat <BOS>

où est ma chatte

où est ma

デコーダの改良良
•  系列列の学習を真⾯面⽬目に [Wiseman+]
•  外部メモリの利利⽤用 [Wang+]
•  出⼒力力⻑⾧長の制御 [Kikuchi+]

全体の改良良
•  モデルの簡素化 [Kim+]
•  アライメントを陽に⾏行行う [Yu+]

１：
２：

３：

１：Sequence-to-Sequence Learning as
Beam-Search Optimization [Wiseman+]

•  Seq2seqの問題点：学習時とテスト時で状況が違う

5

エンコーダ

<BOS>

où
est

est
ma

ma
où

où est

正しい単語を出⼒力力できるよう学習

正しい単語から次の単語を予測
（前のステップでの誤りを考慮しない）

エンコーダ

<BOS>

où
est
ma

ma
chat

où est
ma

学習時 テスト時
確からしい系列列を出⼒力力

前のステップでの出⼒力力から次の単語を予測

問題の解決のために
•  ビームサーチで正解系列列を出⼒力力できるよう学習
– 確からしい系列列を出⼒力力できるよう学習
– ビーム内に正解があれば良良い（モデルが頑健）

 　

6

正解の単語列列

学習時の
ビームサーチ結果
（ビーム幅：3）

at each time step t so that we find margin viola-
tions. We follow LaSO (rather than early-update 2;
see Section 2) and build candidates in a recursive
manner. If there was no margin violation at t�1,
then St is constructed using a standard beam search
update. If there was a margin violation, St is con-
structed as the K best sequences assuming the gold
history y1:t�1 through time-step t�1.

Formally, assume the function succ maps a se-
quence w1:t�1 2Vt�1 to the set of all valid se-
quences of length t that can be formed by appending
to it a valid word w2V . In the simplest, uncon-
strained case, we will have

succ(w1:t�1) = {w1:t�1, w | w 2 V}.

As an important aside, note that for some prob-
lems it may be preferable to define a succ func-
tion which imposes hard constraints on successor
sequences. For instance, if we would like to use
seq2seq models for parsing (by emitting a con-
stituency or dependency structure encoded into a se-
quence in some way), we will have hard constraints
on the sequences the model can output, namely, that
they represent valid parses. While hard constraints
such as these would be difficult to add to standard
seq2seq at training time, in our framework they can
naturally be added to the succ function, allowing us
to train with hard constraints; we experiment along
these lines in Section 5.3, where we refer to a model
trained with constrained beam search as ConBSO.

Having defined an appropriate succ function, we
specify the candidate set as:

St = topK

(
succ(y1:t�1) violation at t�1
SK

k=1 succ(ŷ
(k)
1:t�1) otherwise,

where we have a margin violation at t�1 iff
f(yt�1,ht�2) < f(ŷ

(K)
t�1 ,

ˆ

h

(K)
t�2) + 1, and where

topK considers the scores given by f . This search
procedure is illustrated in the top portion of Figure 1.

In the forward pass of our training algorithm,
shown as the first part of Algorithm 1, we run this
version of beam search and collect all sequences and
their hidden states that lead to losses.

2We found that training with early-update rather than (de-
layed) LaSO did not work well, even after pre-training. Given
the success of early-update in many NLP tasks this was some-
what surprising. We leave this question to future work.

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home today

Figure 1: Top: possible ŷ
(k)
1:t formed in training with a

beam of size K =3 and with gold sequence y1:6 = “a
red dog runs quickly today”. The gold sequence is high-
lighted in yellow, and the predicted prefixes involved in
margin violations (at t=4 and t=6) are in gray. Note
that time-step T =6 uses a different loss criterion. Bot-
tom: prefixes that actually participate in the loss, ar-
ranged to illustrate the back-propagation process.

4.3 Backward: Merge Sequences
Once we have collected margin violations we can
run backpropagation to compute parameter updates.
Assume a margin violation occurs at time-step t be-
tween the predicted history ŷ

(K)
1:t and the gold his-

tory y1:t. As in standard seq2seq training we must
back-propagate this error through the gold history;
however, unlike seq2seq we also have a gradient for
the wrongly predicted history.

Recall that to back-propagate errors through an
RNN we run a recursive backward procedure —
denoted below by BRNN — at each time-step t,
which accumulates the gradients of next-step and fu-
ture losses with respect to ht. We have:

rhtL BRNN(rhtLt+1,rht+1L),

where Lt+1 is the loss at step t+1, deriving, for
instance, from the score f(yt+1,ht). Running this
BRNN procedure from t=T � 1 to t=0 is known
as back-propagation through time (BPTT).

In determining the total computational cost of
back-propagation here, first note that in the worst
case there is one violation at each time-step, which
leads to T independent, incorrect sequences. Since
we need to call BRNN O(T) times for each se-
quence, a naive strategy of running BPTT for each
incorrect sequence would lead to an O(T 2

) back-
ward pass, rather than the O(T) time required for
the standard seq2seq approach.

Fortunately, our combination of search-strategy
and loss make it possible to efficiently share
BRNN operations. This shared structure comes

at each time step t so that we find margin viola-
tions. We follow LaSO (rather than early-update 2;
see Section 2) and build candidates in a recursive
manner. If there was no margin violation at t�1,
then St is constructed using a standard beam search
update. If there was a margin violation, St is con-
structed as the K best sequences assuming the gold
history y1:t�1 through time-step t�1.

Formally, assume the function succ maps a se-
quence w1:t�1 2Vt�1 to the set of all valid se-
quences of length t that can be formed by appending
to it a valid word w2V . In the simplest, uncon-
strained case, we will have

succ(w1:t�1) = {w1:t�1, w | w 2 V}.

As an important aside, note that for some prob-
lems it may be preferable to define a succ func-
tion which imposes hard constraints on successor
sequences. For instance, if we would like to use
seq2seq models for parsing (by emitting a con-
stituency or dependency structure encoded into a se-
quence in some way), we will have hard constraints
on the sequences the model can output, namely, that
they represent valid parses. While hard constraints
such as these would be difficult to add to standard
seq2seq at training time, in our framework they can
naturally be added to the succ function, allowing us
to train with hard constraints; we experiment along
these lines in Section 5.3, where we refer to a model
trained with constrained beam search as ConBSO.

Having defined an appropriate succ function, we
specify the candidate set as:

St = topK

(
succ(y1:t�1) violation at t�1
SK

k=1 succ(ŷ
(k)
1:t�1) otherwise,

where we have a margin violation at t�1 iff
f(yt�1,ht�2) < f(ŷ

(K)
t�1 ,

ˆ

h

(K)
t�2) + 1, and where

topK considers the scores given by f . This search
procedure is illustrated in the top portion of Figure 1.

In the forward pass of our training algorithm,
shown as the first part of Algorithm 1, we run this
version of beam search and collect all sequences and
their hidden states that lead to losses.

2We found that training with early-update rather than (de-
layed) LaSO did not work well, even after pre-training. Given
the success of early-update in many NLP tasks this was some-
what surprising. We leave this question to future work.

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home today

Figure 1: Top: possible ŷ
(k)
1:t formed in training with a

beam of size K =3 and with gold sequence y1:6 = “a
red dog runs quickly today”. The gold sequence is high-
lighted in yellow, and the predicted prefixes involved in
margin violations (at t=4 and t=6) are in gray. Note
that time-step T =6 uses a different loss criterion. Bot-
tom: prefixes that actually participate in the loss, ar-
ranged to illustrate the back-propagation process.

4.3 Backward: Merge Sequences
Once we have collected margin violations we can
run backpropagation to compute parameter updates.
Assume a margin violation occurs at time-step t be-
tween the predicted history ŷ

(K)
1:t and the gold his-

tory y1:t. As in standard seq2seq training we must
back-propagate this error through the gold history;
however, unlike seq2seq we also have a gradient for
the wrongly predicted history.

Recall that to back-propagate errors through an
RNN we run a recursive backward procedure —
denoted below by BRNN — at each time-step t,
which accumulates the gradients of next-step and fu-
ture losses with respect to ht. We have:

rhtL BRNN(rhtLt+1,rht+1L),

where Lt+1 is the loss at step t+1, deriving, for
instance, from the score f(yt+1,ht). Running this
BRNN procedure from t=T � 1 to t=0 is known
as back-propagation through time (BPTT).

In determining the total computational cost of
back-propagation here, first note that in the worst
case there is one violation at each time-step, which
leads to T independent, incorrect sequences. Since
we need to call BRNN O(T) times for each se-
quence, a naive strategy of running BPTT for each
incorrect sequence would lead to an O(T 2

) back-
ward pass, rather than the O(T) time required for
the standard seq2seq approach.

Fortunately, our combination of search-strategy
and loss make it possible to efficiently share
BRNN operations. This shared structure comes

正解の単語列列がビームから落落ちた箇所について
正解の単語列列がビーム内に来るよう学習

ビーム内の単語列列と
順位が⼊入れ替わるよう
学習

実験結果

•  独-英の翻訳タスクでseq2seqモデルより良良い性能
•  単語並べ替え，依存構造解析でもseq2seqモデル
より良良い性能だった
 　

7

Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

seq2seq 22.53 24.03 23.87
BSO, SB-� 23.83 26.36 25.48

XENT 17.74 20.10 20.28
DAD 20.12 22.25 22.40
MIXER 20.73 21.81 21.83

Table 4: Machine translation experiments on test set; re-
sults below middle line are from MIXER model of Ran-
zato et al. (2016). SB-� indicates sentence BLEU costs
are used in defining �. XENT is similar to our seq2seq
model but with a convolutional encoder and simpler at-
tention. DAD trains seq2seq with scheduled sampling
(Bengio et al., 2015). BSO, SB-� experiments above
have Ktr =6.

al. (2016), and like them we also use a single-layer
LSTM decoder with 256 units. We also use dropout
with a rate of 0.2 between each LSTM layer. We em-
phasize, however, that while our decoder LSTM is of
the same size as that of Ranzato et al. (2016), our re-
sults are not directly comparable, because we use an
LSTM encoder (rather than a convolutional encoder
as they do), a slightly different attention mechanism,
and input feeding (Luong et al., 2015).

For our main MT results, we set �(ŷ
(k)
1:t) to

1� SB(ŷ
(K)
r+1:t, yr+1:t), where r is the last margin

violation and SB denotes smoothed, sentence-level
BLEU (Chen and Cherry, 2014). This setting of �
should act to penalize erroneous predictions with a
relatively low sentence-level BLEU score more than
those with a relatively high sentence-level BLEU
score. In Table 4 we show our final results and those
from Ranzato et al. (2016).8 While we start with an
improved baseline, we see similarly large increases
in accuracy as those obtained by DAD and MIXER,
in particular when Kte > 1.

We further investigate the utility of these
sequence-level costs in Table 5, which compares us-
ing sentence-level BLEU costs in defining � with
using 0/1 costs. We see that the more sophisti-
cated sequence-level costs have a moderate effect on
BLEU score.

8Some results from personal communication.

Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

0/1-� 25.73 28.21 27.43
SB-� 25.99 28.45 27.58

Table 5: BLEU scores obtained on the machine trans-
lation development data when training with �(ŷ

(k)
1:t)= 1

(top) and �(ŷ
(k)
1:t)= 1� SB(ŷ

(K)
r+1:t, yr+1:t) (bottom), and

Ktr = 6.

Timing Given Algorithm 1, we would expect
training time to increase linearly with the size of
the beam. On the above MT task, our highly tuned
seq2seq baseline processes an average of 13,038 to-
kens/second (including both source and target to-
kens) on a GTX 970 GPU. For beams of size Ktr

= 2, 3, 4, 5, and 6, our implementation processes
on average 1,985, 1,768, 1,709, 1,521, and 1,458 to-
kens/second, respectively. Thus, we appear to pay
an initial constant factor of ⇡ 3.3 due to the more
complicated forward and backward passes, and then
training scales with the size of the beam. Because
we batch beam predictions on a GPU, however, we
find that in practice training time scales sub-linearly
with the beam-size.

6 Conclusion

We have introduced a variant of seq2seq and an as-
sociated beam search training scheme, which ad-
dresses exposure bias as well as label bias, and
moreover allows for both training with sequence-
level cost functions as well as with hard constraints.
Future work will examine scaling this approach to
much larger datasets.

Acknowledgments

We thank Yoon Kim for helpful discussions and for
providing the initial seq2seq code on which our im-
plementations are based. We thank Allen Schmaltz
for help with the word ordering experiments. We
also gratefully acknowledge the support of a Google
Research Award.

References
[Andor et al.2016] Daniel Andor, Chris Alberti, David

Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman

テスト時のビーム幅

ビーム幅 = 6で学習した結果

EMNLP2016における 
seq2seqモデルの改良良

8

エンコーダの改良良
•  ⼊入⼒力力⽂文の意味的／統語的情報を
エンコードして利利⽤用 [Takase+]

where is my cat <BOS>

où est ma chatte

où est ma

デコーダの改良良
•  系列列の学習を真⾯面⽬目に [Wiseman+]
•  外部メモリの利利⽤用 [Wang+]
•  出⼒力力⻑⾧長の制御 [Kikuchi+]

全体の改良良
•  モデルの簡素化 [Kim+]
•  アライメントを陽に⾏行行う [Yu+]

１：
２：

３：

２：Memory-enhanced Decoder for Neural
Machine Translation [Wang+]

•  メモリを利利⽤用してデコードする情報を選択
– メモリ：アテンションの拡張

 　

9

where is my cat <BOS>

où est ma

où est ma

アテンション：エンコーダの隠れ層の
重み付き和をデコードの各ステップで利利⽤用

0
1

chatte

２：Memory-enhanced Decoder for Neural
Machine Translation [Wang+]

•  メモリを利利⽤用してデコードする情報を選択
– メモリ：アテンションの拡張

 　

10

where is my cat <BOS>

où est ma

où est ma

メモリ：エンコーダの
隠れ層のどこに
注⽬目するか決定

デコーダの隠れ層で
メモリを更更新

実験結果

•  中-英の翻訳タスクでBLEUが向上

11

SYSTEM MT03 MT04 MT05 MT06 AVE.
Groundhog 31.92 34.09 31.56 31.12 32.17

RNNsearch? 33.11 37.11 33.04 32.99 34.06

RNNsearch? + coverage 34.49 38.34 34.91 34.25 35.49

MEMDEC 36.16 39.81 35.91 35.98 36.95
Moses 31.61 33.48 30.75 30.85 31.67

Table 1: Case-insensitive BLEU scores on Chinese-English translation. Moses is the state-of-the-art phrase-based statistical
machine translation system. For RNNsearch, we use the open source system Groundhog as our baseline. The strong
baseline, denoted RNNsearch?, also adopts feedback attention and dropout. The coverage model on top of RNNsearch? has
significantly improved upon its published version (Tu et al., 2016), which achieves the best published result on this training
set. For MEMDEC the number of cells is set to 8.

pre-training n MT03 MT04 MT05 MT06 Ave.
N 4 35.29 37.36 34.58 33.32 35.11

Y 4 35.39 39.16 35.33 35.02 36.22

Y 6 35.63 39.29 35.61 34.92 36.58

Y 8 36.16 39.81 35.91 35.98 36.95

Y 10 36.46 38.86 34.46 35.00 36.19

Y 12 35.92 39.09 35.31 35.12 36.37

Table 2: MEMDEC performances of different memory size.

• RNNSearch: an attention-based NMT
model with default settings. We use the open
source system GroundHog as our NMT
baseline4.

• Coverage model: a state-of-the-art variant
of attention-based NMT model (Tu et al.,
2016) which improves the attention mecha-
nism through modelling a soft coverage on
the source representation.

4.4 Results
The main results of different models are given
in Table 1. Clearly MEMDEC leads to remark-
able improvement over Moses (+5.28 BLEU) and
Groundhog (+4.78 BLEU). The feedback atten-

tion gains +1.06 BLEU score on top of Ground-
hog on average, while together with dropout adds
another +0.83 BLEU score, which constitute the
1.89 BLEU gain of RNNsearch? over Ground-
hog. Compared to RNNsearch? MEMDEC is
+2.89 BLEU score higher, showing the model-
ing power gained from the external memory. Fi-

4https://github.com/lisa-groundhog/
GroundHog

nally, we also compare MEMDEC with the state-
of-the-art attention-based NMT with COVERAGE
mechanism(Tu et al., 2016), which is about 2

BLEU over than the published result after adding
fast attention and dropout. In this comparison
MEMDEC wins with big margin (+1.46 BLEU
score).

4.5 Model selection

Pre-training plays an important role in optimiz-
ing the memory model. As can be seen in Tab.2,
pre-training improves upon our baseline +1.11

BLEU score on average, but even without pre-
training our model still gains +1.04 BLEU score
on average. Our model is rather robust to the
memory size: with merely four cells, our model
will be over 2 BLEU higher than RNNsearch?.
This further verifies our conjecture the the exter-
nal memory is mostly used to store part of the
source and history of target sentence.

4.6 Case study

We show in Table 5 sample translations from
Chinese to English, comparing mainly MEMDEC

284

RNNsearch: アテンション付きseq2seq

EMNLP2016における 
seq2seqモデルの改良良

12

エンコーダの改良良
•  ⼊入⼒力力⽂文の意味的／統語的情報を
エンコードして利利⽤用 [Takase+]

where is my cat <BOS>

où est ma chatte

où est ma

デコーダの改良良
•  系列列の学習を真⾯面⽬目に [Wiseman+]
•  外部メモリの利利⽤用 [Wang+]
•  出⼒力力⻑⾧長の制御 [Kikuchi+]

全体の改良良
•  モデルの簡素化 [Kim+]
•  アライメントを陽に⾏行行う [Yu+]

１：
２：

３：

３：Sequence-Level Knowledge Distillation [Kim+]

•  ⽬目的：Seq2seqのモデルを⼩小さくする
– 翻訳機をオフラインの状況やスマートフォン
でも動かしたい

•  ⼿手法：学習済みのモデルを圧縮
1.  不不要なパラメータの除去
2.  knowledge distillation

•  Knowledge distillationを利利⽤用

13

Knowledge distillation
•  学習済みのモデルの出⼒力力を簡素なモデルで復復元

14

<BOS> où est<BOS> où est

0

1

où es
t

m
a

ch
a où es

t
m

a
ch

atoù es
t

m
a

ch
at

学習済みのモデル
（深いネットワーク）

簡素なモデル
（浅いネットワーク）

学習済みのモデルの
出⼒力力を復復元するよう学習

実験結果

•  同程度度のBLEUを達成しつつ圧縮に成功
•  実装：https://github.com/harvardnlp/seq2seq-attn

15

Model Size GPU CPU Android

Beam = 1 (Greedy)

4⇥ 1000 425.5 15.0 �
2⇥ 500 1051.3 63.6 8.8

2⇥ 300 1267.8 104.3 15.8

Beam = 5

4⇥ 1000 101.9 7.9 �
2⇥ 500 181.9 22.1 1.9

2⇥ 300 189.1 38.4 3.4

Table 2: Number of source words translated per second across
GPU (GeForce GTX Titan X), CPU, and smartphone (Samsung
Galaxy 6) for the various English ! German models. We were
unable to open the 4⇥ 1000 model on the smartphone.

higher BLEU, our results indicate that this is not
necessarily the case. The perplexity of the baseline
2 ⇥ 500 English ! German model is 8.2 while the
perplexity of the corresponding Seq-KD model is
22.7, despite the fact that Seq-KD model does sig-
nificantly better for both greedy (+4.2 BLEU) and
beam search (+1.4 BLEU) decoding.

5.1 Decoding Speed

Run-time complexity for beam search grows linearly
with beam size. Therefore, the fact that sequence-
level knowledge distillation allows for greedy de-
coding is significant, with practical implications for
running NMT systems across various devices. To
test the speed gains, we run the teacher/student mod-
els on GPU, CPU, and smartphone, and check the
average number of source words translated per sec-
ond (Table 2). We use a GeForce GTX Titan X for
GPU and a Samsung Galaxy 6 smartphone. We find
that we can run the student model 10 times faster
with greedy decoding than the teacher model with
beam search on GPU (1051.3 vs 101.9 words/sec),
with similar performance.

5.2 Weight Pruning

Although knowledge distillation enables training
faster models, the number of parameters for the
student models is still somewhat large (Table 1:
Params), due to the word embeddings which dom-
inate most of the parameters.10 For example, on the

10Word embeddings scale linearly while RNN parameters
scale quadratically with the dimension size.

Model Prune % Params BLEU Ratio

4⇥ 1000 0% 221 m 19.5 1⇥
2⇥ 500 0% 84 m 19.3 3⇥

2⇥ 500 50% 42 m 19.3 5⇥
2⇥ 500 80% 17 m 19.1 13⇥
2⇥ 500 85% 13 m 18.8 18⇥
2⇥ 500 90% 8 m 18.5 26⇥

Table 3: Performance of student models with varying % of the
weights pruned. Top two rows are models without any pruning.
Params: number of parameters in the model; Prune %: Percent-
age of weights pruned based on their absolute values; BLEU:
BLEU score with beam search decoding (K = 5) after retrain-
ing the pruned model; Ratio: Ratio of the number of parameters
versus the original teacher model (which has 221m parameters).

2 ⇥ 500 English ! German model the word em-
beddings account for approximately 63% (50m out
of 84m) of the parameters. The size of word em-
beddings have little impact on run-time as the word
embedding layer is a simple lookup table that only
affects the first layer of the model.

We therefore focus next on reducing the mem-
ory footprint of the student models further through
weight pruning. Weight pruning for NMT was re-
cently investigated by See et al. (2016), who found
that up to 80 � 90% of the parameters in a large
NMT model can be pruned with little loss in perfor-
mance. We take our best English ! German student
model (2⇥ 500 Seq-KD + Seq-Inter) and prune x%
of the parameters by removing the weights with the
lowest absolute values. We then retrain the pruned
model on Seq-KD data with a learning rate of 0.2

and fine-tune towards Seq-Inter data with a learning
rate of 0.1. As observed by See et al. (2016), re-
training proved to be crucial. The results are shown
in Table 3.

Our findings suggest that compression benefits
achieved through weight pruning and knowledge
distillation are orthogonal.11 Pruning 80% of the
weight in the 2 ⇥ 500 student model results in a
model with 13⇥ fewer parameters than the original
teacher model with only a decrease of 0.4 BLEU.
While pruning 90% of the weights results in a more
appreciable decrease of 1.0 BLEU, the model is

11To our knowledge combining pruning and knowledge dis-
tillation has not been investigated before.

Knowledge distillationの結果
パラメータを減らしつつ
同程度度のBLEUを達成

不不要なパラメータを
削除することで
さらに圧縮が可能

Seq2seqモデルの改良良まとめ
•  EMNLP2016において提案された改良良⼿手法
– 正確な単語列列を出⼒力力できるよう学習 [Wiseman+]
– デコーダのネットワークを改良良 [Wang+]
– モデルの圧縮 [Kim+]

•  これからどのような発展があるか？
– 既存のアイデアをニューラル上で実装

•  [Wiseman+] のように既存のアイデアを取り込む
– モデルの簡素化，計算の⾼高速化

•  モデルの圧縮 [Kim+] を突き詰める
•  Convolutional NNなどを利利⽤用して計算を並列列化

–  RNNとCNNの利利点を取ったモデルも [Bradbury+ arXiv]

16

RNN vs. CNN
•  LSTMなど，RNN系⼿手法は並列列化できない
•  CNNなど，並列列計算可能な⽅方が⾼高速なハズ
– RNN系と⽐比べたときの性能差は？

 　

17

where is my cat where is my cat

pooling

RNN系
前のステップの出⼒力力が
次のステップの⼊入⼒力力なので
順に計算する必要がある

CNN
各 n-gram の計算は独⽴立立
（並列列に計算可能）

CNNはエンコーダ／デコーダに使える？

•  Convolutional Neural Network Language Models [Pham+]
–  ⾔言語モデル（デコーダ部分）をCNNで実装，LSTMと⽐比較

•  使えるが，性能⾯面ではLSTMに劣劣る（かもしれない）

18

Model k w Penn Treebank
val test #p

FFNN (Bengio et al., 2006) 128 - 156 147 4.5
Baseline FFNN 128 - 114 109 4.5

+CNN 128 3 108 102 4.5
+MLPConv 128 3 102 97 4.5

+MLPConv+COM 128 3+5 96 92 8
+ML-CNN (layers) 128 3 113 108 8

1159

RNN (Mikolov et al., 2014) 300 1 133 129 6
LSTM (Mikolov et al., 2014) 300 1 120 115 6.3
LSTM (Zaremba et al., 2014) 1500 2 82 78 48

LSTM (trained in-house) 256 2 108 103 5.1

1159

CNN

Penn Treebankでのperplexity

まとめ
•  EMNLP2016において，ニューラルネットに
関連する研究は35%程度度
– ニューラルネットは⾔言語処理理でも，よく使われる
道具のひとつになっている印象

– ⾔言語⽣生成において強⼒力力なモデル，Seq2seqに様々
な改良良が⾒見見られた

•  これからの⽅方向性
– 既存のアイデアをニューラル上で実装
– モデルの簡素化，計算の⾼高速化

19

参考⽂文献
•  Sequence to Sequence Learning with Neural Networks [Sutskever+

NIPS 14]
•  Sequence-to-Sequence Learning as Beam-Search Optimization

[Wiseman+ EMNLP 16]
•  Memory-enhanced Decoder for Neural Machine Translation [Wang+

EMNLP 16]
•  Controlling Output Length in Neural Encoder-Decoders [Kikuchi+

EMNLP 16]
•  Neural Headline Generation on Abstract Meaning Representation

[Takase+ EMNLP 16]
•  Sequence-Level Knowledge Distillation [Kim+ EMNLP 16]
•  Online Segment to Segment Neural Transduction [Yu+ EMNLP 16]
•  Convolutional Neural Network Language Models [Pham+

EMNLP 16]
•  Quasi-Recurrent Neural Networks [Bradbury+, arXiv]

20

