EMNLP2016参加報告

第3回自然言語処理シンポジウム 2016/12/21 東北大学 高瀬翔

EMNLP2016にNN関連の論文は どの程度あったのか?

増村さんのEMNLP2015参加報告 と同じ解析をしてみる

NAACL2016では

71 / 182

NAACL-HLT 2016参加報告 [鈴木] より EMNLP2016では

92 / 264 = 34.8% NTT () 70件/312 - 次の用語をタイトルに含む論文数 in EMINLP 2015

"neural", "lstm", "recursive", "rnn", "recurrent", "cnn", "convolution", "dnn", "deep", "embedding", "distributed representation"

基礎解析(統語解析など)から 応用(機械翻訳など)まで 様々なタスクでニューラルが活躍

ニューラルネットを用いた自然言語生成の研究を紹介

- Sequence-to-sequence(seq2seq) [Sutskever+ 14]
 が主流
 - 入力-出力対を変えることで様々なタスクに適用可能

EMNLP2016における seq2seqモデルの改良

• アライメントを陽に行う [Yu+]

1 : Sequence-to-Sequence Learning as Beam-Search Optimization [Wiseman+]

• Seq2seqの問題点:学習時とテスト時で状況が違う

ma

正しい単語から次の単語を予測 前のステップでの出力から次の単語を予測 (前のステップでの誤りを考慮しない)

問題の解決のために

ビームサーチで正解系列を出力できるよう学習
 - 確からしい系列を出力できるよう学習
 - ビーム内に正解があれば良い(モデルが頑健)

正解の単語列がビームから落ちた箇所について 正解の単語列がビーム内に来るよう学習

	Machine Translation (BLEU)			
テスト時のビーム幅	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$	
seq2seq	22.53	24.03	23.87	
BSO, SB- Δ	23.83	26.36	25.48	
	ビ-	ーム幅 = 6で	 で学習した結果	

- 独-英の翻訳タスクでseq2seqモデルより良い性能
- ・単語並べ替え,依存構造解析でもseq2seqモデルより良い性能だった

EMNLP2016における seq2seqモデルの改良

• アライメントを陽に行う [Yu+]

2 : Memory-enhanced Decoder for Neural Machine Translation [Wang+]

メモリを利用してデコードする情報を選択
 –メモリ:アテンションの拡張

アテンション:エンコーダの隠れ層の 重み付き和をデコードの各ステップで利用

2 : Memory-enhanced Decoder for Neural Machine Translation [Wang+]

メモリを利用してデコードする情報を選択
 メモリ:アテンションの拡張

SYSTEM	MT03	MT04	MT05	MT06	AVE.
Groundhog	31.92	34.09	31.56	31.12	32.17
RNNsearch*	33.11	37.11	33.04	32.99	34.06
$RNNsearch^* + coverage$	34.49	38.34	34.91	34.25	35.49
МемDес	36.16	39.81	35.91	35.98	36.95
Moses	31.61	33.48	30.75	30.85	31.67

RNNsearch: アテンション付きseq2seq

・ 中-英の翻訳タスクでBLEUが向上

EMNLP2016における seq2seqモデルの改良

• アライメントを陽に行う [Yu+]

- 3 : Sequence-Level Knowledge Distillation [Kim+]
- 目的:Seq2seqのモデルを小さくする

 翻訳機をオフラインの状況やスマートフォンでも動かしたい
- 手法:学習済みのモデルを圧縮
 - 1. 不要なパラメータの除去
 - 2. knowledge distillation
- Knowledge distillationを利用

Knowledge distillation

• 学習済みのモデルの出力を簡素なモデルで復元

	Model	Prune %	Params	BLEU	Ratio
Knowledge distillationの結果 パラメータを減らしつつ 同程度のBLEUを達成	4×1000 2 × 500	$0\% \\ 0\%$	221 m 84 m	19.5 19.3	$1 \times 3 \times$
不要なパラメータを 削除することで さらに圧縮が可能	2×500	$50\%\ 80\%\ 85\%\ 90\%$	42 m 17 m 13 m 8 m	$19.3 \\ 19.1 \\ 18.8 \\ 18.5$	5 imes 13 imes 18 imes 26 imes

- 同程度のBLEUを達成しつつ圧縮に成功
- 実装: <u>https://github.com/harvardnlp/seq2seq-attn</u>

Seq2seqモデルの改良まとめ

- EMNLP2016において提案された改良手法

 正確な単語列を出力できるよう学習 [Wiseman+]
 デコーダのネットワークを改良 [Wang+]
 モデルの圧縮 [Kim+]
- これからどのような発展があるか?
 - 既存のアイデアをニューラル上で実装
 - [Wiseman+] のように既存のアイデアを取り込む
 - モデルの簡素化,計算の高速化
 - モデルの圧縮 [Kim+] を突き詰める
 - Convolutional NNなどを利用して計算を並列化
 - RNNとCNNの利点を取ったモデルも [Bradbury+ arXiv]

RNN vs. CNN

- LSTMなど, RNN系手法は並列化できない
- CNNなど, 並列計算可能な方が高速なハズ
 RNN系と比べたときの性能差は?

RNN系

前のステップの出力が 次のステップの入力なので 順に計算する必要がある

CNN

CNNはエンコーダ/デコーダに使える?

Convolutional Neural Network Language Models [Pham+]

 言語モデル(デコーダ部分)をCNNで実装,LSTMと比較

	Model	k	w	Penn Treebank		ank
				val	test	#p
F	FFNN (Bengio et al., 2006)	128	-	156	147	4.5
	Baseline FFNN	128	-	114	109	4.5
	+CNN	128	3	108	102	4.5
RNN LSTM	+MLPConv	128	3	102	97	4.5
	+MLPConv+COM	128	3+5	96	92	8
	RNN (Mikolov et al., 2014)	300	1	133	129	6
	LSTM (Mikolov et al., 2014)	300	1	120	115	6.3
	LSTM (Zaremba et al., 2014)	1500	2	82	78	48

Penn Treebankでのperplexity

• 使えるが, 性能面ではLSTMに劣る(かもしれない)

まとめ

- EMNLP2016において, ニューラルネットに 関連する研究は35%程度
 - ニューラルネットは言語処理でも、よく使われる
 道具のひとつになっている印象
 - 言語生成において強力なモデル, Seq2seqに様々 な改良が見られた
- これからの方向性
 一既存のアイデアをニューラル上で実装
 ーモデルの簡素化,計算の高速化

参考文献

- Sequence to Sequence Learning with Neural Networks [Sutskever+ NIPS 14]
- Sequence-to-Sequence Learning as Beam-Search Optimization [Wiseman+ EMNLP 16]
- Memory-enhanced Decoder for Neural Machine Translation [Wang+ EMNLP 16]
- Controlling Output Length in Neural Encoder-Decoders [Kikuchi+ EMNLP 16]
- Neural Headline Generation on Abstract Meaning Representation
 [Takase+ EMNLP 16]
- Sequence-Level Knowledge Distillation [Kim+ EMNLP 16]
- Online Segment to Segment Neural Transduction [Yu+ EMNLP 16]
- Convolutional Neural Network Language Models [Pham+ EMNLP 16]
- Quasi-Recurrent Neural Networks [Bradbury+, arXiv]