新世代ネットワークと情報ネットワーク科学

村田正幸
大阪大学 大学院情報科学研究科
murata@ist.osaka-u.ac.jp
www.anarg.jp

電子情報通信学会情報ネットワーク科学時限研究専門委員会
10 August 2012
内容

• 最近のネットワーク研究のトピック
• 新世代ネットワーク
• 大規模複雑ネットワーク
• 今後の研究課題
新世代ネットワークの位置づけ

・10〜15年先のネットワークがターゲット
・“Clean Slate”設計を指向

新しいアイディア
Clean Slate R&D
今、欠けているものは？

- 科学（解析）：すでに存在しているものにある普遍的な法則を探求すること、知の創造
- 技術（設計）：新しい機能を実現する具体的な方法を案出し、作り上げ、利用すること、知の具現化

科学
- システム → モデル → 数学的解析 → 性質

技術
- システム → 新しいモデル → 性質

- 情報ネットワーク科学技術の創成
- 秩序だった既成学問体系からは産まれない

現状システム → モデル → 数学的解析 → 性質

新しいシステム ← 新しいモデル
ネットワークはますます大規模複雑化

- ユビキタスから "Network of Things" へ、さらには "Network of Objects" へ
- センサーネットワーク、M2M、IoT
- 情報環境、サイバーフィジカルシステム

- CCN (Content Centric Network)
 - NSF FIAプロジェクト
 - エンド間パイプではなく、名前付けされたコンテンツを扱う
 - コンテンツを（サーバではない）ユーザのより近いところにおおく、あるいはキャッシュする
 - ユーザ要求に（サーバではない）ネットワークが適応する

- Name based Routing
- Storage Aware Routing
- In-Network Processing

M. Murata
CCN設計要件の例

設計プリンシプル
- Support multiple and new business models
- Simplicity
 - “Keep It Simple, Stupid” by David S. Isenberg
 →“Make everything as simple as possible, but not simpler,” by Albert Einstein
- Sustainability, Scalability and Robustness
- Loose coupling
 - As things get larger they often exhibit increased interdependence between components

CCNのメリット
- Content could be stored/cached closer to the end users
- Routers could identify/analyze what content is flowing through them
- Network could dynamically identify what is the best path to the user
- Content could be interactively adapted
- Content could be selected and adapted to the context
- Content could be active instead of static

CCNの設計要件
1. Name resolution and findability
2. Content-centric routing
3. Flexible content business models
4. Trustworthiness of content and media services
5. Choice of source and presentation
6. Decentralized self-organization

SRC: EC Future Content Networks Group, “Why do we need a Content-Centric Internet? Proposals towards Content-Centric Internet Architectures,” White paper.

M. Murata
2020年に何が起こるか？
一端末数、情報の爆発一

SRC:NICT新世代ネットワーク戦略プロジェクト

ネットワークの役割は2つ以上の「もの（情報）」を繋ぎ、情報を交換すること。
繋ぐ相手を峻別するのもサービス（正しく接続）

アドレス数の増加＋コンテンツの移動
→追跡ルーチング（＋検索＋クローリング＋キャッシング＋複製）

端末の手動管理の限界、集中管理の不効率
→ロバストで、自己組織的な手法必須

新世代ネットワーク
普及期 2020年
端末数10兆個レベル

ノード、端末数

ネットワーク移動
ドメイン移動
モビリティ

IPv4
IPv6

固定電話網
NGN

IDとロケーションの分離

数千万-億
（建造物数クラス）
數十億
（世界人口クラス）
数百-千億
（静的物体数クラス）
数兆-兆
（流通消費物数クラス）

・移動する10兆個のデバイスを現状のインターネットでは収容できない
・Mobile IPでは対応できない
・知りたい情報自身も移動
・移動するコンテンツはクローリング結果からの検索は通用しない
・情報でルーティングできる機構
ネットワークの新しい設計指標

- 「性能（効率性）」以外の指標の重要性
- 効率を求める時代でもなくなった
- Killer Applicationを追い求める意味（スループット命）のなさを示す傍証
- *-ties

Manageability Availability Dependability
Sustainability Complexity Reconfigurability
Adaptability Reliability Evolvability

・「量」から「質」へ
M. Murata

平均だけではなく分布も
新世代NWにおける品質?

「量」から「質」へ

新世代NWの志向から見えてくること
- 新しいサービス／アプリケーションの展開のしやすさ
- コンテンツ・情報の発見、取得のしやすさ
- ネットワーク管理のしやすさ
- ロバスト性、サステナビリティ
- 「質」の規定
- スケーラビリティがますます重要
- IoTのサポート

M. Murata

第一原理
「ネットワーク品質」の見直し
品質規定はやはり相対的？
ユーザ品質はやはり見た目
評価手法、指標？
信頼性＝セキュリティか？
オーダーの議論を越えるもの？
ストリーミングデータの品質？
ルータキャッシュに意味があるか？
「情報寿命」の積極的な利用

- 制御情報
- 情報に関する「寿命」の導入
- 情報共有範囲を限定する
- 自己組織化制御の根幹

- コンテンツ、サービスまで含められないか？
- 必要な情報を必要な範囲にのみ散布
- 新しい「情報量」の定義

M. Murata
量から質へ

- 大容量化より大事なことは？
 - 接続性
 - エンド間；移動も含めて
 - OpenFlow；粒度の細かい接続性
 - CCN；コンテンツ
 - ロバスト性、適応性
 - 柔軟性、サステナビリティ、持続的成長性

- とは言え、トラフィック量増大も真実
 - P2P
 - クラウドサービス
 - コンピューティング資源のコモディティ化
 - 所有から利用へ
 - ストリーミング
 - オンラインストレージ
 - IoT（トラフィック量はカメラセンサーが占める）
ネットワークの大規模複雑化

数、トポロジー

- 空間的複雑化
 - 端末の多様化、端末数の拡大
 - さまざまな競合する技術の発展
 - アプリケーション・サービスの突然の出現
 - モビリティ
 - ネットワークが扱う粒度の細分化（ホスト・端末からコンテンツへ）

- 時間的複雑化
 - さまざまな競合する技術の発展
 - アプリケーション・サービスの多様化
 - モビリティ
 - 情報環境化：センサー→アクチュエーターのリアルタイム処理

全体を構成する諸要素の精緻な分析→コンポーネント設計→システム化の限界
要素還元論から新しいシステム設計論へ

複雑適応系
- 全体を組み上げる過程も含めて系を捉える
- 自己組織化制御
- 要素が全体からのフィードバックを受けて多様に変化するとともに、全体が自律的に発展

Adaptability
- どのような環境に適応できる能力
- さまざまなサービスに対する適応性

Predictability
- 何がくるかわからない状況での「予測可能性」

Evolvability
- 将来的な予測困難な成長（変動）の吸収
複雑適応系の知見に期待したいこと

キーワード
- べき則（スケールフリー）、スモールワールド、自己組織化、自己成長、複雑適応系、創発性、非平衡系
- 複雑適応系に期待したいこと
 - 大規模システム全体の振舞
 - 大規模システム全体の設計手法
 - 非線形システムの安定性
 - 故障の連鎖反応の影響
 - ロバスト性と成長可能性の関係
 - スケールフリー性の起源

使いそうな理論
- Complex Network Theory
- Field Theory
- Coordination Theory
- Network Information Theory
- Network Entropy
- Networked Control Theory
- Networked buffering

M. Murata
自己組織化制御

自己組織化制御

- 要素間のインタラクションのみによって全体の構造や機能を発現（中央制御なし）
- 各コンポーネントは、環境とのインタラクションによって、あらかじめ望んでいる構成（アトラクター）に適応的に到達する
- 正のフィードバック+負のフィードバック
- ランダム性の導入

自己組織型情報ネットワーク制御

- 正のフィードバック+負のフィードバックによる安定化
- ランダム性の導入による新しい解の発見
 - 時間的変動のあるシステムに対してロバスト性を確保
- エンティティ間の局所的通信による行動の決定
 - 環境を介した間接的なインタラクションによって、全体の制御を実現する
Networked Buffering

- 遺伝子の発現パターン
 - 1つの遺伝子が、複数種類の発現パターンを持つ遺伝子ネットワーク
 - 遺伝子と、その発現によって提供される資源や機能との関係を示したネットワーク
- 縮退性 (Degeneracy)
 - 異なる遺伝子の発現パターンが部分的に重複し、冗長なネットワークを構築
 - 遺伝子ネットワークの頑強性、環境変動耐性に大きく寄与

M. Murata
情報ネットワーク科学技術としての
「生物に学ぶネットワーク制御」

- 生物システムの持つ自律性、自己組織性に学ぶ、頑強なネットワークの構築
- 自己組織型制御の重要性
- 基本構造は正のフィードバック+負のフィードバックによる安定化
- ランダム性の導入による新しい解の発見、特に時間的変動のあるシステムに対してロバスト性を確保するのに必須要素
- エンティティ間の通信による行動の決定
- 環境を介した間接的なインタラクションによって、全体の制御を実現する（Swarm Intelligence, Stigmergy）

- 問題
 - 生物学者も「30億年生き延びている生物はうまくいっている」とは言えるが、まだまだ、解明途上
 - なぜロバストか？情報システムで言うと
 - システムが大規模、複雑化すればバグが入り込む余地が大きくなる
 - 人の構成ミスが入り込みやすい
 - 管理がたいへんになる

 ということは言えるが、どうやって定量的に言うかは簡単ではない
ゆらぎ制御における解探索

バイアスブラウン運動で動く分子モータ

ゆらぎを用いた細胞情報処理

脳の視覚認知

一般化ゆらぎ方程式

\[
\frac{dx}{dt} = -\frac{1}{\rho} \frac{\partial U(x,t)}{\partial x} B + \sqrt{\frac{2kT}{\rho}} \eta(t)
\]

細胞、脳レベル

アトラクタを持つ制御構造

心地良さ

整合性

● 個々のエンティティは環境に応じて動作する
● 各エンティティは自律的に判断する
ゆらぎ方程式から情報ネットワークへ

\[\frac{d}{dt} x = f(x) \cdot \text{activity} + \eta \]

アトラクタを持つ制御構造
ゆらぎを利用できる形で受け入れる構造
\(f(x) = -\frac{dU}{dx} \)

系の状態
状態が良いと感じる度合い
スカラーとは限らない

熱ゆらぎ、自発ゆらぎ
ゆらぎの構造

各階層における制御・プロトコルの動作

・システム遅延の逆数
・スループット
・「信頼性」

ノイズによるシステム駆動
・局所最適解からの脱出
・環境変動への適応

● If-then-else型で扱われてきた制御システムを、ゆらぎ制御を用いてモデル化し、頑強かつ環境変動に柔軟に適応可能な情報ネットワークシステムを実現

● 階層化アーキテクチャをとる情報ネットワークにおいて、各階層プロトコルをアトラクタを持つ制御構造によって実現し、新しい情報ネットワークアーキテクチャを実現する
既存メタヒューリスティクスとの違い

オンライン制御
集中型制御
分散協調型制御
自己組織化制御

トラヒック量の変動

オンライン制御

情報収集

経路再構築
大域的最適化：発見的解法の実行

コンピュータプログラミングされた手順に従って経路変更

トラヒック変動への適応性？
もともと資源変動は予測できることが前提

収集情報量・計算時間の増大

自己組織化制御

自律的
情報収集
自律的経路再構築

もともと時間発
展方程式として
記述
自己組織化に対して指摘される問題点

• 「結果がわからないのでは使えない」
 • ミクロ→マクロ：要素還元論にとらわれすぎではないか
 • サブシステムの積み上げによる全体システムの設計

• 「保証できないネットワークはビジネスに使えない」
 • 現状、保証できるしかけはない、騙されているだけ
 • 問題がなければ、何をやっても（やらなくても）うまくいく

• 「管理できないネットワークは使えない」
 • 「管理する」の意味
 • 現状の状態を把握している
 • 資源を操作する
 • 時間粒度の異なることを指摘している

• 「評価手法がない」
 • 現状シミュレーション
 • ロバストなシステムの評価手法→情報流モデル

M. Murata
Adaptive System
- The system can adapt to changing operating conditions and disturbances
- Time scale of control delay \leq Environmental Changes

Self-Organizing System
- Has an ability to operate in a dynamically changing environment without centralized control. We expect an "emergent behavior" which is often unpredictable
- Time scale of control delay \leq Environmental Changes

Managed Self-Organizing System
Provides a range of operating regime by an external control while allowing a self-organization property
Traffic, Observer, Controller

$$\frac{d}{dt} x = f(x) \cdot \alpha + \eta$$

Target System

M. Murata
目指すネットワークアーキテクチャ

階層内協調制御
・エマージェント型制御
 ・進化ゲーム理論、Topology Evolutionなど
 ・上位層の活性度が下位層を適応的に動作させる
 ・下位層の状態変化が上位層を適応的に動作させる

自己組織型制御
・Swarm Intelligenceなど
・エンティティ間の局所通信
・フィードフォワードによる最適解への収束
・フィードバック制御による安定化
・ランダム性の導入による適応性

M. Murata 25
融合がうまくいかなかった例

- 相手（バイオ研究者）がプロじゃないうまくいかない
- 相手（バイオ研究者）の研究成果がなかなかパブリッシュされない
- 研究や環境の変化のオーダーが違う
- 期待したほど解明が進んでいない
- 定性的な説明（予測、期待？）しかできない
- 反応拡散方程式：シミュレーションしてみないとわからない

- ICT側のWillがない
- 従来のアプローチ（テリトリー）に固執
- 人に数理モデルを応用しただけで、本質的なメリットが説明できない (Yet Another Approach)
- うまく応用例がみつからない
- 小さい応用ならいくらでも見つけられるが、将来のICTの本質となるアーキテクチャを構築するのはそんなに簡単ではない

M. Murata
学んだこと

・生体の環境変動への適応性→故障があっても動作し続けるシステム
・イノベーションの種を隣にある
・ただし、異なる分野の研究者とのコミュニケーションは簡単ではない
・世の中にはいろいろな発想、考え方の人がいる
・相手が言っていることを理解する能力が大切

「人間は何も創造しない。ただ、発見するだけである。新しい作品のために自然の秩序を求める建築家は、神の創造に寄与する。故に独創とは、創造の起源に還ることである」

M. Murata
生物と情報ネットワーク構造における共通的性質

http://wiki.c2b2.columbia.edu/califanolab/index.php/Research

http://research.lumeta.com/ches/map/gallery/index.html

M. Murata
スケールフリーネットワーク

- べき則 (Power-Law Network, Scale-Free Network)
 - リンクの接続数がkになる確率；k^{-g}
 - トポロジーに関するもの
 - 遺伝子代謝ネットワーク、神経回路網、送電網、知人関係、論文引用関係、WWWのリンク数、P2P接続関係、インターネットのルータ接続関係など

- 特徴
 - （ランダムネットワークと比べて）ランダム故障には強いが、アタックには弱い
 - “Robust, yet fragile”
 - ハブノードの存在により、経路長が小さい

- なぜべき則か？
 - 自己組織化
 - Dynamical evolution
 - Many interacting units

http://research.lumeta.com/ches/map/gallery/index.html

M. Murata
インターネットのスケールフリー性

インターネットはもともと分散志向であり、大規模かつ複雑

・ 基礎研究の成果に基づいて得られたものではない
・ 「人が設計可能な、制御可能な範囲を超えている」
・ にも関わらず、べき則に従っている
・ 単なる現象か必然か？

・ 空間的構造
 ・ 「スケールフリー」理論
 ・ 構造解析→工学的に何がわかったか？

・ 時間的構造
 ・ システムダイナミクス
 ・ Feedback systemの研究
 ・ ネットワーク全体の情報流制御
 • アトラクター (Basin) 理論、フラクタル理論などによる
evolutionの研究

M. Murata
残されている問題

- インターネットと他の自然システム、人工システムとの違い？
 - そもそもインターネットはデザインされたシステムか？
 - ASレベルとルータレベルの違い
 - ASレベルでも、ピアリングなど人が介在している
 - ルータレベルは地理的要因が大きい
 - 少なくともBAトポロジーとは明らかに異なる
- 情報流制御とトポロジー、フロー量の関係
 - 「最適化」はどこで介在するのか
- 時間スケールと空間スケールの関係？
 - 時間スケールの異なるシステムをどう扱うか
 - 発展する（成長する）ネットワークと設計問題
 - BA法も発展するネットワーク前提
脳や生体に学ぶ情報ネットワーク設計・制御

脳機能ネットワーク

A ➶ B

生体機能ネットワーク（転写因子ネットワーク）

N. Bhardwaj, et. al., “Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels,” PNAS, April 2010.

・脳機能や生体機能に学ぶ省エネかつロバストな情報ネットワークのトポロジー構築・制御
・脳機能や生体機能：省エネかつロバスト
・スケールフリー性があることは共通
・脳機能ネットワークの刺激伝達構造や生体機能ネットワークの情報伝達構造を分析
・モジュール性、階層性 (Hierarchy) など
・情報ネットワークのトポロジー構造と対比

・省エネかつロバストな情報ネットワークのトポロジー構築・制御
・まずはトポロジカルな観点で検証
・次に、脳機能や生体機能にはないと考えられる情報ネットワーク固有の特徴（例えば、回線容量、経路制御、転轍制御）が作用する環境下で有効なトポロジー制御を検討評価する

M. Murata

32
情報ネットワークのトポロジー構造

ノードの役割を分類 [Guimera2005]
- ネットワークをいくつかのモジュールに分割
- Participation coefficient, \(P \) \([0 \leq P \leq 1] \)
- ノードが、他のモジュールのノードと連結している割合

自身が属するモジュールのノード次数分布における、ノードの
次元（接続リンク数）の偏差
- 2.58 (0.5%) をを超えるとハブノード、それ以外は非ハブノード

脳機能ネットワーク [Meunier2009]
- モジュール度 0.5〜0.6
- 情報ネットワーク（AT&T）
- モジュール度 0.89

脳機能ネットワークとBAモデルはトポロジー構造が類似（？）
- 情報ネットワークは高いモジュール性を有する

- モジュール性が高いほど、パケットのばらつきが大きいリンク数が抑えられる
- 課題：トポロジーをどう組み替えていけば良いか

通信用をどのように設計すればよいか

I. Murata 33
インターネットのモジュラリティ？

Spatial Network?

距離↔コスト？

AT&T トポロジの構造的特徴

- モジュール性の高い構造に着目
- モジュール性：局所的なノード集合への分割のしやすさ
- モジュール内は密に、モジュール間は疎に接続
今後の研究課題

- 様々な生物種（大腸菌・イースト菌・ヒト等）の転写因子ネットワークの刺激伝達構造との類似点・相違点を検証する
- 生物種の生物学的な機能対比、さらには省エネ・ロバスト性の比較評価にもとづき、情報ネットワークが有するべきトポロジ構造を明らかにする

転写因子ネットワークの情報伝達構造・脳機能ネットワークの機能発現
情報ネットワークの情報伝達構造
類似点・相違点抽出
低負荷かつロバストな情報伝達が可能な情報ネットワークの設計
回線容量とリンク数の相関？

- リンク接続数はべき則、回線容量も (?)
- Weighted Scale-free Network
- 回線容量とリンク接続数の相関関係は？
 - 集線を考えれば、回線容量はべき則になる
 - 多重化効果？
 - 現状は、回線容量設計と効率性の関係

L Li, D Alderson, W Willinger, J Doyle, “A first-principles approach to understanding the internet’s router-level topology,” ACM SIGCOMM 2004
回線容量設計

- ネットワーク性能は次数分布のみに依存するわけではない
- ネットワーク性能はトポロジ構造に大きく依存
- 通信ネットワーク固有の特性として何に着目するか、がトポロジーのモデル化にとって重要

回線容量に着目

IIJ社ネットワークでは回線容量分布が傾き-1のべき則に従うことを示されており、傾き-1の回線容量分布を与えた

・ISPトポロジにおいて、回線容量分布の傾きが-1の時、ルータの処理能力をもっとも有効利用できる