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Abstract  In this paper, we propose the first study which estimates the frequency response directly from the geometry of a 

planar filter, and which also synthesizes the planar filter geometry directly from the given frequency response using a 

convolutional neural network (CNN) based auto-encoder/decoder. we also explain the way to generate an accurate and massive 

dataset for training the auto-encoder/decoder. In our experiments, the frequency response is estimated in 1.5 msec and the filter 

geometry is synthesized in 2.7 msec, respectively. 
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1. INTRODUCTION 

In a microwave region, planar filters are u tilized. 

Since the planar filter is composed of distributed 

elements, element values of a filter theory cannot be 

used. Therefore, filter designers must tune the filter 

geometry using an electromagnetic (EM) simulator 

until the frequency response meets their wants. Since 

this task takes long time due to the long duration of 

EM simulations, several neural networks have been 

proposed for the reduction of design time. However, 

these proposals need the design parameters of the 

filter geometries and the neural networks tune the 

design parameters such as line lengths, widths and so 

on. Extraction of the design parameters gives another 

task to designers. Moreover, a designer must set 

constraints of the design parameters and convert the 

obtained design parameter into an actual geometry 

although the neural networks are employed for the 

reduction of tasks.  On the other hands, there is a 

convolutional neural network (CNN) called  the auto-

encoder/decoder (Fig. 1). This auto-encoder/decoder 

converts an image into a similar image via a compact 

vector containing a feature of the image. Since the 

planar filter has a two-dimensional geometry in its 

surface, the auto-encoder/decoder can deal it with the 

image. 

In this paper, we mapped the frequency response 

into the feature vector of the auto-encoder/decoder. 

As a result, auto-encoder outputs the frequency 

response from the planer filter image. Conversely, 

auto-decoder output the planer filter image from the 

desired frequency response. This is a first paper which 

converts bidirectionally between the filter geometry 

and frequency response not to be detouring the design 

parameters. In Section 2, we consider the dataset 

generation for training the auto-encoder/decoder 

because the quantity and quality of dataset are very 

important for training as well as other neural networks.  

2. DATASET GENERATION 

High-speed calculation of the frequency response 

is vital to generate a huge amount of dataset. The  

frequency response of a planar filter can be calculated 

quickly by a cascade production of F-parameters [1, 

2]. However, the accuracy of the calculation is not 

enough because uniformity of current distribution is 

corrupted at the edge where the two lines are 

connected as shown in Fig. 2. The accuracy of the 

frequency response guarantees the consistency 

between the filter geometry and its frequency 

response which is necessary for the convergence of 

the neural network [3]. Since the uniformity of the 

current distribution is corrupted at the edge of the 

wires, the total F-parameter F total is not a simple 

product of F-parameters (F left · Fr ight) which is 

extracted under the conditions of uniform current 

distributions (Fig. 2). If we succeeded to extract the 

edge model Fedge, the accuracy of F total would be 

improved as F left ·Fedge ·Fr ight. Following part of this 

section describes how to extract the Fedge (de-

embedding) and implant the Fedge (embedding). Since 

the Fedge is functions of signal line widths (W1, W2), 

all combinations of W1 and W2 should be examined as 

illustrated in Fig. 3. This combination table contains 

information about the edge models at the part of W1 < 

W2 and W1 > W2 with lead lines of W1 and W2. This 

combination table also contains straight lines when 

W1 equals to W2 and they are used for de-embedding 

the lead lines. Since these lines (W1 = W2) are two 

times longer than lead lines of de-embedding targets 

(W1 < W2, W1 > W2), they should be halved using 

equations in Fig. 4. In this case, the scaling factor n 

is 0.5. Figure 5(a) shows the edge model de-

embedding. Since the non-diagonal part of the table 

in Fig. 3 contains lead lines (W1 and W2) and the edge 

model Fedge, the lead lines are de-embedded using 
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diagonal part of the table (W1 = W2) after halving their 

lengths. The edge model Fedge is a cascade product of 

the inverse function of corresponding lead line F1, de-

embedding target, and the inverse function of F2. As 

a result, Fedge represents the non-uniformity of the 

current distribution as frequency response and its 

length is zero because total lengths of the de -

embedding target (L1 + L2) is coincident with the total 

subtraction lengths (L1, L2). Figure 6 shows a random 

generation of a filter geometry. Since the filter 

geometry has a symmetrical structure over vertically 

and horizontally, the quarter size of the geometry is 

generated as an image. Random widths (Wn) and 

lengths (Ln) are generated and connected until the 

accumulated length reaches the half of the total length 

L total. Conversely, entire geometry is a unfold image 

over vertically and horizontally.  The frequency 

response of the randomly generated geometry is 

calculated and stored in a dataset with it s quarter-

sized image. Depending on the geometry the line 

lengths are scaled as shown in Fig. 4. Edge models are 

embedded depending on the line widths as shown in 

Fig. 5(b). Since the edge model has no length, the 

embedding does not affect the total length  and affects 

only the frequency response.  
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Fig. 1. Auto-encoder and decoder of a planar filter using convolutional neural networks (CNNs). Since the surface of a planar filter has

a two-dimensional geometry, it can be assumed as an image. The system of an auto-encoder and decoder is a special case of a

neural network which converts an image to its similar image via a compact vector which contains a feature of the images. The

compact vector is mapped to a frequency response of a planar filter in this case. The path from an image to its feature vector is

called auto-encoder. Auto-decoder is a path from a feature vector to its related image. Since the images have higher-order

vectors than the feature vector, convolution, and de-convolution are utilized for down- and up-sampling in the auto-encoder

and decoder paths. A couple of full-connected neural networks are the bridges of a convoluted image to the feature vector or

the deconvoluted image from the feature vector. Non-linear sigmoidal functions are inserted properly to extract logical

relationships and to normalize the values. This auto-decoder and encoder paths are also human mimic tasks. When designing a

planar filter, the human creates the filter geometry from the desired frequency. Afterword, the frequency response is confirmed

using an electromagnetic (EM) simulator to ensure its response meets the desired frequency.
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Fig. 3. A combination table of transmission lines. This table is

generated by changing the line width W1 (port 1 side) and

W2. It contains all variations of a straight line (W1 = W2)

and all combinations of line width (W1 < W2). Note that the

W1 > W2 is generated by the port swappingof W1 < W2.
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Fig. 4. Length scaling of a transmission line (TL). Since the

propagation constant g and characteristic impedance Z0 are

not depending on the length of the TL, scaled F-parameter

(F2) is calculated from F1 using the scaling factor n.

x x

  
    

             

=

     

L1 L1 L2 L2

x x

           

=

     

L1 L1 L2L2

0

0

    

W1 W1

W2 W2

W1 W1

W2 W2

(a) Edge model (Fedge) de-embedding.

(b) Edge model (Fedge) embedding.

Fig. 5. Edge model Fedge de-embedding and embedding. Edge

model de-embedding is calculated from the inverse

functions of TLs whose length and width are coincided

with the those of target ones. Conversely, Fedge is

embedded between TLs when the line widths are different.
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Fig. 7. The appearance of the EMPro, which is an electromagnetic

(EM) simulator provided by Agilent technology Inc. Signal

line of a 1.8 mm copper foil is on a 0.8 mm

polytetrafluoroethylene (PTFE) bulk which is shield with a

perfect electrical conductor (PEC). Signal line widths of W1

and W2 are swept to generate the combination table of Fig.

3. The width sweeping and S-parameter extraction are

performed automatically by a built-in Python script.

Fig. 2. The current density of connected transmission lines (TLs)

whose widths are different. At the edge where the two TLs

are connected, the current distribution is non-uniform.

Therefore, the simple product of left- and right-side F-

parameters (Fleft, Fright) is different from the total one (Ftotal).

For the accurate calculation of the Ftotal, the non-uniformity

of the connection (Fedge) should be considered.

Fleft Fright Fedge

Ftotal

Ftotal ≠ Fleft · Fright Ftotal ≈ Fleft · Fedge · Fright
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Fig. 6. Random geometry generation of a filter. TL length (L1, L2

and L3/2) and width (W1/2, W2/2 and W3/2) are generated

randomly until the sum of the length (L1 + L2 + L3/2)

reaches the half of the total length (Ltotal/2). The geometry

is mirrored vertically and horizontally.
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3. EXPERIMENTS 

Figure 1 also shows a structure of the auto -

encoder/decoder. The size of the target planer filter is 

1 x 4 cm. Metal and bulk parts are converted into 

white and black pixels. One pixel corresponds to 0.1 

x 0.1 mm and the quarter-sized image becomes 50 x 

100. Since the frequency response is a magnitude of 

S21 from DC to 30 GHz (500 MHz step), the number 

of points is 61. The pairs of image and frequency 

response are stored in the dataset. The images are fed 

to the auto-encoder and output of the auto-encoder is 

compared with the frequency response and residue are 

fed back to train the network. The frequency 

responses are fed to the auto-decoder and output of 

the auto-decoder is compared with the image and 

residue are fed back to train the network. In the auto -

encoder path, an image is converted into 6 x 3 x 100 

matrix using 42 x 2 convolution kernels (stride is 4 x 

2). The 6 x 3 x 100 matrix is converted into 14 x 3 x 

6 using 1 x 90 kernels (stride is 1 x 2). The 14 x 3 x 6 

matrix are fully connected to the frequency response.  

In the auto-decoder path, frequency response is fully 

connected to 14 x 3 x 6 matrix. The 14 x 3 x 6 matrix 

is converted into 6 x 3 x 100 using 1 x 90 

deconvolution kernels (stride is 4 x 2). The 6 x 3 x 

100 matrix is converted into 50 x 100 image using 42 

x 2 kernel (stride is 1 x 2). The calculation costs of 

the auto-encoder/decoder are 302,652 and 7,323,372 

in terms of the product-sum. 
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Fig. 8. Geometry of a planar filter and its frequency response. Dash

and solid-lines are S11 and S21 when the geometry is

analyzed with an electromagnetic simulator. Symbols

denotes the reconstructed responses calculated from F-

parameters. Circle (triangle) symbols are case of ignoring

(considering) the edge model.
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(b) Frequency responses.

Ftotal = F1 ∙ Fedge1 ∙ F2 ∙ Fedge2 ∙ F3 ∙ Fedge3 ∙ F4 ∙ Fedge4 ∙ F5

Ftotal = F1 ∙ F2 ∙ F3 ∙ F4 ∙ F5

Image (quarter size of the geometry)

Frequency response

Fig. 9. Part of a dataset. The dataset contains pairs of an image and

its frequency response. The image is a randomly generated

quarter-sized planar filter (Fig. 6). Its frequency response is

calculated quickly and accurately taking account of the

edge model (Fig. 5). Quantity and quality of a dataset are

important for the auto-encoder/decoder training (Fig. 1).
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function of Epoch while input and output of auto-encoder

(Fig. 1) are images and their frequency responses (Fig.

9) , respectively.
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To generate the table shown in Fig. 3, an EM 

simulator called EMPro is utilized as shown in Fig. 7. 

Figure 8(a) shows an example of a filter geometry. 

Figure 8(b) shows the frequency responses of the 

geometry. The cascaded production of F-parameters 

with edge models (triangles) exactly traces the 

frequency response which is the EM simulation result 

of the entire geometry (lines). On the other hands, the 

one without edge models has a discrepancy. This 

result shows the accuracy using edge models is 

comparable to that of the EM simulation even though 

the calculation is done in 2 msec while the EM 

simulation takes 1.5 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows a part of the dataset. The dataset 

contains pars of randomly generated image and its 

frequency response, which is calculated accurately 

considering the edge models. Taking advantage of 

high-speed calculation, 30,000 pairs are stored in the 

dataset. 

Figure 10 shows a learning curve of the auto-

encoder. Figure 11 shows the root-mean-square 

(RMS) error with respect to the dataset size. For each 

size, 80% (20%) of the dataset is used for training 

(validation). The quantity of dataset improves the 

neural network. Figure 12 shows the input image and 

frequency response of the dataset and output of the 

auto-encoder when this image is applied. This pair of 

image and frequency response are not used for 

training and used only for validation. This result 

shows the auto-encoder can estimate the frequency 

response from the input image.  

Figure 13 shows a learning curve of the auto-

decoder. Figure 14 shows an example of filter 

synthesis. Brick-wall filter response is applied to the 

auto-decoder as a desired frequency response. The 

auto-decoder synthesis the most possible filter 

geometry. After the binarization of the image, the 

auto-encoder estimates the frequency response from 

the image. The sigmoidal function of the auto-decoder 

can be replaced with the binary-sigmoidal function to 

obtain the binary image, but the binary-sigmoidal 

function conceals the derivatives which used in the 

training process. Since the planar filter cannot always 

realize the arbitral frequency, some iterative 

optimizations seem to be required in a practical usage. 

The auto-decoder and encoder take 2.7 and 1.5 msec 

using nVidia RTX 2080, respectively.  
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Fig. 12. Input image and frequency responses stored in a dataset

and that encoded from the image. This image and this

frequency response are not used for the auto-encoder

training (they are used only for validation).
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4. CONCLUSION 

In this paper, we propose the auto-encoder/decoder 

which is used for a planar filter analysis/synthesis. 

The geometry of the planar filter is regarded as an 

image and the feature vector of the auto -

encoder/decoder is mapped to the frequency response. 

We also describe the way to generate a massive and 

accurate dataset to train the auto-encoder/decoder. We 

demonstrate the auto-encoder can estimate the 

frequency response from the input image and the auto -

decoder can synthesize the filter geometry from the 

given frequency response. This is a first study which 

converts directly and bidirectionally between filter 

geometry and frequency response. 
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Fig. 14. An example of synthesized filter image (upper right) decoded from the desired frequency response (dash line in the graph)

and a frequency response (solid line in the graph) encoded from a binarized image (bottom right). Desired frequency

response is fed to the auto-decoder and a quarter-sized filter image is synthesized. Since the auto-decoder outputs gray-scale

image, it is binarized using a certain image library such as OpenCV. The binarized image is fed to the auto-encoder and its

frequency response is estimated. The estimated frequency response tends to be different from the desired frequency if it is

physically difficult to be realized as shown in this example of a brick-wall filter. Auto-decoder and encoder take 2.7 and 1.5

msec, respectively.


