Student Design Competition Designated values of mismatch lines

(1) Mismatch line 1
(a) $\mathrm{f}_{0}: 2 \mathrm{GHz}$
(b) $\left|S_{11 \text { min }}\right|$ ideally zero
(c) $\left|S_{11 \text { _max }}\right|$: decided by Z_{m}
(d) $Z_{m}: 25 \Omega$
(2) Mismatch line 2
(a) $\mathrm{f}_{0}: 3 \mathrm{GHz}$
(b) $\left|\mathrm{S}_{11 \text { min }}\right|$ ideally zero
(c) $\left|S_{11 \text { _max }}\right|$: decided by Z_{m}
(d) $Z_{m}: 100 \Omega$

Student Design Competition Device descriptions

- Substrate : single layer
- Interface: Female SMA connector (metric screw thread connector)
- Transmission line type: planar type, no limitation of transmission structure

Microstrip, CPW, GCPW, Coplanar strip, etc

- Use of stubs and tapered transmission line structure are not permitted.

Evaluation Criteria(TBD)

(1) Mismatch line 1

(a) $\mathrm{f}_{0}: 2 \mathrm{GHz}$

(b) $\left|S_{11 \text { _min }}\right|$ ideally zero (linear)
(c) $\left|S_{11 \text { _max }}\right|$: decided by Z_{m} (linear)
(d) $Z_{m}: 25 \Omega$
(2) Mismatch line 2
(a) $\mathrm{f}_{0}: 3 \mathrm{GHz}$
(b) $\left|S_{11 \text { min }}\right|$ ideally zero (linear)
(c) $\left|S_{11 \text { _max }}\right|$ decided by Z_{m} (linear)
(d) $Z_{m}: 100 \Omega$

Criteria:

1. $\Delta \mathrm{fO}=\left(\mathrm{f} _\right.$meas -fO$)$
2. $\Delta \mathrm{S} 11 _$min $=\left(\mathrm{S} 11 _\right.$min_meas $-\mathrm{S} 11 _$min $)$

S11_min $=0.001$ (linear)
3. $\Delta \mathrm{S} 11 _$max $=\left(\mathrm{S} 11 _\right.$max_meas $-\mathrm{S} 11 _$max $)$at f0/2

S11_max = 2/3(linear)
4. $\Delta Z m=\left(Z m _\right.$meas $\left.-Z m\right) / Z m$ at f0

The winner will achieve the minimum value of the sum of the two mismatch lines measured data.

Student Design Competition Example: design and simulation results

Student Design Competition Example: measurement results

