Research Topics on Information-Centric Networking: Caching, Routing and Virtualization

Thomas Silverston
JFLI, Japanese-French Laboratory for Informatics (CNRS UMI3527)
The University of Tokyo

May, 21th 2015 – Tokyo
Bio

• 09/2014: JFLI, CNRS UMI 3527
 – Japanese-French Laboratory for Informatics
 – The University of Tokyo
• 09/2011: Associate Professor at University of Lorraine (Nancy)
 – LORIA, CNRS UMR 7503
 – Inria Nancy – Grand Est
• 2009-2011: Post-doc (JSPS) at University of Tokyo
• 2007: Ph.D. internship at University of Tokyo
 – CNRS/WIDE project
 – Prof. Esaki Laboratory

• Scienscope
 – http://www.sciencescope.org
 – French Researchers Association in Japan
 • French Research Day: 2015/11/13
Motivation

• Internet is mostly used to access content
 – Video: 86% of global consumer traffic by 2016
 • [Cisco Visual Networking Index 2014]
• Internet: host-to-host communication
 – TCP/IP
• Users are interested with content, not location
• Information Centric Networks
 – Content Centric Networks
 • *Networking Named Content*,
 V. Jacobson et al., ACM CoNEXT 2009
CCN Overview

- In-Network Caching
- Packet address refers to content not location
 - Named-Data Networking
- Two primitives
 - Interest, host requests content with Interest message
 - Data, a node answers with a Data message
- Data at the core of the communication
- New ‘Network Layer’ for Content Delivery
Host sends an **Interest** for /video.avi
CCN Overview

- CCN Node forwards *Interest* to the Network
 - Routing is still an open issue (Flooding)
CCN Overview

- Data is transmitted along the delivery Path
- CCN Node stores content and forward to the Host

Caching in CCN Nodes is an issue
CCN Overview

- Host sends an *Interest* for /video.avi
CCN Overview

- CCN node already has /video.avi in cache
CCN Overview

- Host sends an *Interest* for /video.avi
CCN Overview

- CCN node can forward the *Interest*
 - No flooding
Outline

1. Caching in CCN
 - Popularity-based Caching for CCN
 • Content: Most-Popular Caching Strategy [IEEE ICC 2013]
 • Users: Socially-Aware Caching Strategy [IFIP Networking 2014]

2. Routing in CCN
 - SDN-based Routing Scheme for CCN

3. Virtualization in CCN
 - ANR DOCTOR project
CCN Cache Management

• Caching along the delivery Path
 – In-Network caching
• Replacement Policies
 – Decide the element to be replaced
 • LRU, FIFO, MRU MFU etc.
 • Well-studied for OS, memory etc.
• Caching Strategy
 – Decide whether to cache content
 • Huge cache, Fricker et. al IEEE NOMEN 2012
 • Cache less, Chai et. al, IFIP Networking 2012
• Essential to design caching management for CCN
Content Popularity Caching Strategy

- **CCN in-network caching**
 - Always store the content at every nodes on the path
 - Overloading nodes and network resources

- **MPC: Most-Popular Caching Strategy [ICC 2013]**
 - Cache only *popular* content

- **Way of Working**
 - *Counts* locally #Interests for a *Content Name*
 - Information stored into a *Popularity Table*
 - #Content Interest > Popularity Threshold ➔ *Popular*
 - Content is cached
 - Pro-actively distributed 1-hop away
Case Study: MPC

/abc.flv - 0
/def.flv - 0

CCN Node X
Case Study: MPC
Case Study: MPC

/abc.flv is POPULAR

/def.flv is NOT POPULAR (not distributed)
MPC Evaluation

• ccnSim simulator [CRR13]
 – Chunk-level CCN simulator used by the community

• Comparison: MPC vs. CCN (LRU/Always)
 – Catalog: 10^8 files
 – Popularity: Mzipf
 – Cache Size: 10GB
 – ccnSim topologies
 – Avg. Chunk by files: 10^3
 – Metrics: Cache Hit / Cached Elements Ratio
MPC Evaluation

Cache Hit Ratio

Topologies

- Tree
- Abilene
- Tiger2
- Geant
- DTelkom
- Level3

CCN (LRU+Always) vs. MPC
MPC Evaluation

Ratio of Cached Elements

CCN (LRU+Always)
MPC

Topologies

Tree Abilene Tiger2 Geant DTelekom Level3
1. Caching in CCN
 - Popularity-based Caching for CCN
 • Content: Most-Popular Caching Strategy [IEEE ICC 2013]
 • Users: Socially-Aware Caching Strategy [IFIP Networking 2014]
User Popularity Caching Strategy

- Internet has become a «content network»
 - Video counts for 86% of traffic up to 2016
- Users' activity in the Internet: Online Social Network
 - OSN carry information about users and relationships
 - Facebook, Twitter, LinkedIn, etc.
 - Share video, messages, social features in website
- Internet has became a «social network»
- Use OSN information into ICN
 - Some users are «popular»
 - Many relationships

Caching Strategy for CCN based on OSN Information
SACS: Socially-Aware Caching Strategy

- CCN in-path caching
 - Whether the content comes from popular users or not
- Content produced by popular users are more likely to be ‘consumed’ by others
- Privilege content published by popular users
 - Pro-active caching in CCN nodes
 - Content from popular users will be cache in-path
 - No replication from non-popular user
- Popularity computation
 - Eigenvector and PageRank centrality measure
Case Study: SACS
Case Study: SACS

Pro-active Caching

Influential publishes X

Wire, physical connection

Pro-active Caching

15
SACS Evaluation

- **Social Network Topology**
 - LastFM & Facebook data set
- **CCN Topology**
 - inet generator: ~3,000 nodes
- **Popularity**
 - PageRank, Eigenvector (centrality measure)
- **Caching Configuration**
 - Replacement Policies: LRU
 - Cache Size: 1..20
SACS Evaluation

![Graph showing Cache Hit Ratio vs Cache Size for different algorithms: CCN (Leave Copy Everywhere), SACS/Eigenvector, SACS/Pagerank. The graph illustrates how cache hit ratio increases with cache size for each algorithm, with CCN showing the highest hit ratio followed by SACS/Eigenvector and SACS/Pagerank.]
SACS Evaluation

- SACS implementation into CCNx
- Deployed in 14 PlanetLab nodes
Caching Summary

• Popularity-based Caching Strategies for CCN
 – Content Popularity [IEEE ICC 2013]
 – Users Popularity [IFIP Networking 2014]

• Improves CCN performances
 – MPC reduces also #Replications
 • Save network resources

• Perspectives
 – Routing in CCN
 • Software-Defined Networking
 – CCN Deployment
 • Network-Function Virtualization
Outline

1. Caching in CCN
 - Popularity-based Caching for CCN
 • Content: Most-Popular Caching Strategy [IEEE ICC 2013]
 • Users: Socially-Aware Caching Strategy [IFIP Networking 2014]

2. Routing in CCN
 - SDN-based Routing Scheme for CCN
 • Clean-slate approach [IEEE Netsoft 2015]

3. Virtualization in CCN
 - ANR DOCTOR project
Routing in CCN

• **Content Centric Networking**
 – Open Issues: Routing
 • Flooding wastes network resources

• **Software-Defined Networking**
 – Decoupled control/data plane
 – Network devices managed by Controller
 – Store (Push) forwarding decisions in the Controller (nodes)
 – Communication protocols (e.g.: Openflow)

• **Proposal**: Routing scheme for CCN based on SDN
SRSC: SDN-based Routing Scheme for CCN

- **SDN Controller**
 - Learns network topology
 - Store content locality in the network
 - Compute path (nodes->content)
- **SRSC: clean-slate approach**
 - Relies on CCN messages (*Interest/Data*)
 - Deployment without IP
SRSC: Bootstrapping Step

- Bind nodes to a controller
- Discover topology and border nodes
- Advertise content available
SRSC: Forwarding Step

- Compute Path up to content
- Push rules into nodes
SRSC: Forwarding Step

- Compute Path up to content
- Push rules into nodes
SRSC: Forwarding Step

![Diagram showing a network with two networks labeled Network1 and Network2. The diagram includes Controller nodes, CCN nodes, and a user. Arrows indicate the flow of control messages and data. The path from the user to the CCN node and then to the controller is shown, with the file '/movie.avi' circulating between nodes.]
• NS-3 with ndnSim module
• Reduce by 10 #Interests (reduce overhead)
• Cache Hit improvement
SRSC Summary

- A routing scheme for CCN based on SDN
 - Clean-slate approach
 - NS-3 (ndnSim)

- Reduce by 10 #Interest messages
 - Saves network resources / Still improves Cache Hit

- Perspectives
 - Compare with NLSR
 Named-Data Link State Routing Protocol, Houque et al. ACM ICN 2013
 - Implementation into testbed

- More Information
 SRSC: SDN-based Routing Scheme for CCN,
Outline

1. Caching in CCN
 - Popularity-based Caching for CCN

2. Routing in CCN
 - SDN-based Routing Scheme for CCN [IEEE Netsoft 2015]

3. Virtualization in CCN
 - ANR DOCTOR Project
 Deployment and seCurisaTion of new functiOnalities in virtualized networking enviRonnements
 • Funded by ANR: French National Funding Agency
 • Partners: Orange, Thales, Montimage, CNRS/LORIA, UTT
Context and Problem statement

• Deploying new network equipment is costly
 – Deployment only if secure and manageable

• New networking architecture & solutions for better data delivery and optimal use of network resources
 – NDN: Named-based routing

• Cost Reduction, Hardware Mutualisation, Energy Consumption
 – Network Function Virtualization (NFV)
 – Software-Defined Networking (SDN)
Objectives of the project

- Deployment of new network functions and protocols in a virtualized networking environment (NDN Use case)
- Monitoring, managing and securing the virtually deployed networking architectures, using SDN for reconfiguration
Technical Locks & Methodology

• Co-existence of multiple network protocols in the same virtualized node
 – Design and implementation of virtualized NDN network, together with a IP-based one (migration step)

• Monitoring & Security of the virtualized NDN network
 – Monitoring flows & Collection of network and usage data
 – Analysis of attacks and definition of counter-measures

• Dependability over an entire managed domain
 – Management & control using SDN
 – Implementation of a management/security plane

• Deploying NDN for real use
 – Set up of a real testbed for end-users accessing Internet web sites
Project Organization

• **Task 1**: Architecture of the virtualized node for hosting network functions
• **Task 2**: Security analysis and monitoring of virtualized network architectures
• **Task 3**: Global network dependability
• **Task 4**: Testbed (real end-users, real services) and Demonstrator
Tasks Scheduling

- **T0 = 01/12/2014**
 Today = 21/05/2015
 36 months-long project

<table>
<thead>
<tr>
<th>Id</th>
<th>Task/Subtask</th>
<th>T0</th>
<th>+3</th>
<th>+6</th>
<th>+9</th>
<th>+12</th>
<th>+15</th>
<th>+18</th>
<th>+21</th>
<th>+24</th>
<th>+27</th>
<th>+30</th>
<th>+33</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>Project management</td>
<td></td>
</tr>
<tr>
<td>T0.1</td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>T0.2</td>
<td>Coordination with ANR and the ongoing projects</td>
<td></td>
</tr>
<tr>
<td>T0.3</td>
<td>Dissemination and Exploitation</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Architecture of the virtualized node for hosting network functions</td>
<td></td>
</tr>
<tr>
<td>T1.1</td>
<td>Network equipment virtualization techniques</td>
<td></td>
</tr>
<tr>
<td>T1.2</td>
<td>Architecture of the virtualized node and identification of components and functions</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Security analysis and monitoring of virtualized network architectures</td>
<td></td>
</tr>
<tr>
<td>T2.1</td>
<td>Security analysis of the virtualized CCN architecture</td>
<td></td>
</tr>
<tr>
<td>T2.2</td>
<td>Monitoring of CCN through virtualized components</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>Global network dependability</td>
<td></td>
</tr>
<tr>
<td>T3.1</td>
<td>Remediation solutions against vulnerabilities</td>
<td></td>
</tr>
<tr>
<td>T3.2</td>
<td>Execution and orchestration of Counter-measures</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Testbed and Demonstrator</td>
<td></td>
</tr>
<tr>
<td>T4.1</td>
<td>Testbed setup and data measurement</td>
<td></td>
</tr>
<tr>
<td>T4.2</td>
<td>Validation of monitoring and remediation components</td>
<td></td>
</tr>
<tr>
<td>T4.3</td>
<td>Proof of Concept (Demonstrator)</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring architecture

- MMT probes distributed in each virtual machine.
- P2P communication, to share relevant information
- Centralized MMT Operator, for coordination and orchestration
Thank You!

ありがとうございます

Q & A