複雑コミュニケーションサイエンス に向けた理論研究からのアプローチ

寺前順之介 大阪大学大学院 情報科学研究科 teramae@ist.osaka-u.ac.jp

noise-induced phase synchronization ノイズ同期

(Teramae and Tanaka 2004)

膨大な数の神経細胞 からなるネットワーク

大脳皮質だけで数百億個, それぞれ数千の入出力を持つ

"Brainbow"

pyramidal neuron

大脳皮質では入力がなくても活動が持続

自発的持続発火活動(spontaneous ongoing activity)

自発活動と脳の応答

Arieli et al. 1996

脳の応答 = <mark>自発活動</mark> + 感覚入力

Kenet et al. 2003

Question

揺らぎの起源は何か?

その機能は何か?

スパイク発火による情報伝達

つながりの強さ:興奮性シナプス後電位(EPSP)

神経ネットワークの数理的な記述

単一の神経細胞の記述

$$C\frac{dv}{dt} = -g_{L}(v - E_{L}) - g_{Na}m^{3}h(v - E_{Na}) - g_{K}n^{4}(v - E_{K}) + I_{ext}$$

Hodgikn – Huxley equation

神経ネットワークのモデルは 自発揺らぎを説明できなかった

活動が持続しない か 爆発してしまう 神経ダイナミクスの大問題

なぜか?

ニューロンは多数の弱入力を積算する多数決素子

多数の入力が, ほぼ同時に 入る必要がある

多数の弱い結合+稀な強い結合

S. Song, P. J. Sjoestroem, M.Reigl, S. Nelson, D. B. Chklovskii PLoS Biology, 2005, 3(3) 0507-0519

ゆらぎの機能は何か?

確率共鳴:Stochastic resonance

確率共鳴:Stochastic resonance

大脳皮質は、内部ダイナミクスで 確率共鳴を自己組織化

In vitro dynamic-clamp experiment for real cortical neurons

by Yasuhiro Tsubo

Complex Communication Science

Complex Communication Science

input, operation, control output, response, outcome

Complex Communication Science

We need to develop new math for input-output relationship of high-dim dynamical systems

