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ゆらぎがつくる秩序	

noise-‐induced	  
phase	  synchroniza:on	  

ノイズ同期	  
	  

（Teramae	  and	  Tanaka	  2004）	



脳・大脳皮質	

膨大な数の神経細胞
からなるネットワーク	

大脳皮質だけで数百億個，	  
それぞれ数千の入出力を持つ	

“Brainbow”	 pyramidal	  neuron	



大脳皮質の自発活動	

大脳皮質では入力がなくても活動が持続	  
自発的持続発火活動（spontaneous	  ongoing	  ac:vity）	  
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Destexhe	  et	  al.	  2003	  Nat.	  Rev.	  Neurosci.	

Takekawa	  et	  al.	非同期、不規則、低頻度（1-‐2Hz）	

膜電位も乱雑に大きく変動	



自発活動と脳の応答	

the LFP is restricted to frequencies below
about 20 Hz, we expect our prediction to
perform well for up to 50 ms after response
onset. We calculated the predicted response
by adding the initial state, a single frame
(Fig. 3B, second row), to the averaged re-
sponse, a series of frames (Fig. 3B, first row).
The result of such prediction (Fig. 3B, third
row) corresponds well to what we actually
measured (Fig. 3B, fourth row). We applied
this procedure to all of the data (1190 trials
from six cats) and compared the predicted
responses, trial by trial, with the measured
responses.

Particularly good examples of the predic-
tion are shown in Fig. 4A for three consec-
utive trials in a recording session, examin-
ing the images obtained 28 ms after re-
sponse onset. Note that the predictions for
different trials vary only in their initial
states. The variability among these initial
states (first column) is so large and the
patterns are so heterogeneous that the
evoked activity in single trials (second col-
umn) looks very different each time. Yet, in
all of these cases we obtained excellent
predictions of the evoked activity pattern
(third column), in spite of the large vari-
ability. Such good predictions were ob-
tained for many of our trials, for periods of
tens of milliseconds after response onset.
Subtracting the initial state (first column)
from the measured response (second col-
umn) leaves a net pattern ([M - I], last
column): a single-trial estimate of the re-
producible response to this particular stim-
ulus. These net patterns are very similar,
whereas the measured patterns (second
column) are variable, suggesting that "re-
moval" of the ongoing activity from the
measured response does markedly reduce
the response variability. We do not know
if the lack of a perfect match among the
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net patterns should be attributed solely to
the change of ongoing activity from the
initial state or whether, in addition, it
reflects deviations from the simplified, lin-
ear model.

To quantify the performance of the pre-
diction, we measured the correlation coef-
ficient between predicted and measured re-
sponse patterns as a function of time from
response onset for all the data (Fig. 4B).
The long-lasting high correlation shows
that a deterministic response added to a
varying initial state does indeed approxi-
mate the varying individual response. Not
surprisingly, the quality of the prediction
declines with time from response onset.
This decline occurs because the prediction
procedure (Fig. 3B) reduces the ongoing
activity dynamics to a single snapshot (the
initial state). Specifically, it does not take
into account that the ongoing activity con-
tinues to change while the evoked response
unfolds. Evidently, we cannot directly mea-
sure the ongoing pattern during that time.
We could estimate the expected time
course of this change, however, by deter-
mining the autocorrelation of the optically
measured activity patterns, triggered on the
response onset (Fig. 4C). The left-hand part
of the graph describes the statistical behav-
ior of the ongoing activity up to the mo-
ment of response onset, and the right-hand
part shows the statistical behavior of the
activity after the initiation of the response.
Clearly, the background ongoing activity
has a very similar time course to the evoked
activity (the evoked activity lasted for
-100 ms). In fact, the remarkable similarity
between the two halves of the graph indi-
cates that, on average, the ongoing dynam-
ics are not affected by the response. The
excellent resemblance between the curve in
Fig. 4B and the left-hand part of Fig. 4C

B 1 --- C

shows that the gradual decline in the qual-
ity of prediction can indeed be attributed to
the progressing deviation of the ongoing
activity from the initial state (the curve in
Fig. 4B and the right-hand part of Fig. 4C
are identical mathematically).

The brain often does not respond in the
same way to a repeated stimulus, even
though cortical neurons are able to respond
with remarkable temporal accuracy (5, 17).
Because of this variability, found also in
awake, behaving monkeys (2), it has been
assumed that the signal is contaminated by
the brain's "noise." Our findings provide
experimental evidence to support the hy-
pothesis that the processing of sensory input
in the visual cortex involves the combina-
tion of a deterministic response and ongo-
ing network dynamics. The relation be-
tween ongoing activity and evoked re-
sponse in first approximation is linear (18).
The combination of these components ac-
counts for the large response variability in
individual trials. It is well established that
the ongoing activity measured by the elec-
troencephalogram (EEG) is correlated to
behavioral state and cognitive processes
(16). In previous work (8, 19), we charac-
terized the ongoing activity measured opti-
cally, showing that it is strongly correlated
with the local EEG and is composed of
highly structured, ever-changing patterns of
coherent activity. Taken together, these
findings indicate that old notions of what is
"noise" in brain activity may have to be
revised. Because the ongoing activity is of-
ten very large, we would expect it to play a
major role in cortical function. It may pro-
vide the neuronal substrate for the depen-
dence of sensory information processing on
context and on behavioral and conscious
states. Indeed, the ongoing activity also af-
fects the behavior of the awake macaque
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Fig. 4. Quality of prediction of the response. (A) Three consecutive single-
trial responses (1 though 3) to the same visual stimulus, showing the initial
state, the measured response 28 ms later, and the predicted response at
that time. Subtracting the initial state from the measured response yielded
the net pattern [M - I]. (B) Quality of prediction, assessed by the correlation
coefficient between predicted and optically measured activity patterns as a
function of time from response onset. The curve shows the mean correla-
tion; the error bars denote the standard error of the mean (n = 35 recording
sessions). (C) Autocorrelation of optically measured activity patterns, trig-

gered on the response onset (time 0). The right-hand curve shows the
correlation coefficient between the ongoing activity at time 0 Oust before
response onset) and the evoked activity. The left-hand curve shows the
correlation coefficient between the same ongoing activity at time 0 and the
ongoing activity before stimulus onset. After calculating the correlation
coefficient for each pixel in the matrix at a certain delay, we simply summed
all the pixels (because we did not see any consistent temporal differences
between the different pixels). The insets in (B) and (C) show the correlations
over prolonged time.
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Arieli	  et	  al.	  1996	

脳の応答	  	  
	  =	  自発活動 +	  感覚入力	

Kenet	  et	  al.	  2003	



Ques:on	

揺らぎの起源は何か？	  
	  

その機能は何か？	



スパイク発火による情報伝達	

時間	 時間	

つながりの強さ：興奮性シナプス後電位（EPSP）	

-‐70mV	



神経ネットワークの数理的な記述	

C dv
dt

= −gL v − EL( )− gNam3h v − ENa( )− gKn4 v − EK( ) + Iext

Hodgikn	  –	  Huxley	  equa:on	  

単一の神経細胞の記述	



神経ネットワークのモデルは	  
自発揺らぎを説明できなかった	

活動が持続しない　か　爆発してしまう	  

神経ダイナミクスの大問題	

•  脳内にノイズ源は
ない．	

•  単一ニューロンで
は発火しない．	  



なぜか?	
ニューロンは多数の弱入力を積算する多数決素子	

多数の入力が，
ほぼ同時に	  

入る必要がある	



多数の弱い結合＋稀な強い結合	
S.	  Song,	  P.	  J.	  Sjoestroem,	  M.Reigl,	  S.	  Nelson,	  D.	  B.	  Chklovskii	

PLoS	  Biology,	  2005,	  3(3)	  0507-‐0519	  	

対数正規分布	  
Lognormal	  distribu:on	



多数の弱い結合＋稀な強い結合	

×	 ○	



Poisson spike trains to all neurons during initial 100 [ms] to trigger a
spontaneous firing. In the absence of external input, the model sus-
tains a stable asynchronous firing initiated by a brief external stimu-
lus (Fig. 2a). The spontaneous network activity emerges purely from
reverberating synaptic input, is stable in a very low-frequency regime
(Fig. 2b) and is highly irregular (Fig. 2c) as experimentally
observed6,8,9. Firing rate distributions are well fitted by lognormal
distributions7,46,47. Each neuron exhibits large membrane potential
fluctuations, on top of which spikes are generated occasionally
(Fig. 2d), owing to the dynamic balance between excitatory and
inhibitory activities (Fig. 2a and 2e)18,20,24,48. All these properties are
consistent with the spontaneous activity observed in cortical neu-
rons20. Importantly, the average values of the membrane potentials

are around –60 mV in excitatory neurons (Fig. 2f)20,49, at which spike
transmission at strong-sparse synapses becomes most reliable
(Fig. 1a, shaded area). Inputs to weak-dense synapses maintain the
average membrane potential of each neuron (Fig. 2g), whereas inputs
to strong-sparse synapses govern sparse spiking. Therefore, weak-
dense and strong-sparse synapses have different roles in stochastic
neural dynamics, although they distribute continuously.

Long-tailed distributions of coupling strengths offer a much wider
region of the parameter space to stable spontaneous activity than
Gaussian-distributed coupling strengths (Supplementary Fig. 1).
Furthermore, a linear stability analysis reveals the homeostasis of
the ongoing state of the SSWD network (Methods).

What is the underlying mechanism and functional implications
of the spontaneous noise generation? Strong-sparse synapses form
multiple synaptic pathways in the recurrent neural network
(Fig. 3a). Owing to the stochastic resonance effect at these
synapses, spike sequences are routed reliably along these pathways
(Fig. 3b: Supplementary Methods) that may branch and converge
(Fig. 3c). Since strong synapses are rare, spike propagation along a
pathway is essentially unidirectional, as indicated by the cross-
correlograms for presynaptic and postsynaptic neuron pairs
(Fig. 3d). If, therefore, external stimuli elicit spikes from the initial
neurons of some strong pathways, the spikes can stably travel
along these pathways without much interference (Fig. 3e). The
number of spikes received at the end of a pathway is proportional
to that of spikes evoked at the start, although fluctuations in the
spike number increase with the distance of travel (Fig. 3f). These
results imply that spikes can carry rate information along the
multiple synaptic pathways embedded by strong-sparse synapses.
The presence of precise spike sequences has been reported in the
brain of behaving animals50–52. We note that the same spikes are
sensed as noise if they are input to weak synapses.

Discussion
In this study, we have explored a coordinating principle in neural
circuit function based on a long-tailed distribution of connection
weights in a model neural network. The network properties con-
ferred by the long-tailed EPSP distribution account for a role of noise
in information routing and present a novel hypothesis for neural
network information processing. Namely, we have demonstrated
that a single neuron shows spike-based aperiodic stochastic res-
onance; the cross-correlation coefficient between output spikes of a
single neuron and inputs to the strongest synapses are maximized
when the neuron receives a certain amount of background noise.
Stochastic resonance has been studied in neuronal systems in various
contexts. The presence of sensory noise improved behavioral per-
formance in humans38,41 and other animals39. Synaptic bombard-
ment enhanced the responsiveness of neurons to periodic sub-
threshold stimuli20,40,42. Asynchronous neurotransmitter release can
give a noise source for stochastic resonance in local circuits of model
neurons with short-term synaptic plasticity43,44. A surprising result
here is that the networks may internally generate optimal noise with-
out external noise sources for the spike-based stochastic resonance
on sparse-strong connections. Weak-dense connections redistribute
excitatory activity routed reliably on strong connections over the
network as optimal noise sources to sustain spontaneous firing of
recurrent networks.

Internal noise or asynchronous irregular firing may provide the
neural substrate for probabilistic computations by the brain, and how
such activity emerges in cortical circuits has been a fundamental
problem in cortical neurobiology. Such neuronal firing has been
replicated by sparsely connected networks of binary or spiking
neurons18,19,21–23, and the importance of excitation-inhibition balance
has been repeatedly emphasized. However, the mechanism to
generate extremely low-rate spontaneous asynchronous firing
(=10 Hz) remained unclear, and our model gives a possible solution
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Figure 2 | Spontaneous noise in the SSWD recurrent network. The
network receives neither external input nor background noise, and hence
activity is spontaneous. (a) Upper, Spike raster of excitatory (red) and
inhibitory (blue) neurons in the noisy spontaneous firing state. Lower, The
population firing rates of excitatory (red) and inhibitory (blue) neurons.
(b) Firing rate distributions of excitatory (red) and inhibitory (blue)
neurons can be fitted by lognormal distributions (black lines). Mean firing
rates are 1.6 and 14 [Hz] for excitatory and inhibitory neurons respectively.
(c) CVs of inter-spike intervals are distributed around unity in excitatory
(red) and inhibitory (blue) neurons. (d) Time courses of the membrane
potentials of excitatory (red) and inhibitory (blue) neurons exhibit large
amplitude fluctuations. (e) Scatter plot of the instantaneous population
activities of excitatory and inhibitory neurons. The solid line represents
linear regression. (f) Distribution functions of the fluctuating membrane
potentials show the depolarized states of excitatory (red) and inhibitory
(blue) neurons. (g) The mean (solid) and standard deviation (dashed) of
the membrane potential fluctuations of an excitatory neuron when all
EPSPs smaller than the minimum value given in the abscissa are
eliminated. Here, we remove a portion of excitatory synapses on a neuron
from the weakest ones.
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自発発火活動の再現	  
ノイズ源は不要	
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非同期、不規則、低頻度（1-‐2Hz）	

膜電位も乱雑に大きく変動	



ゆらぎの機能は何か？	

VL5270 [mV], VE50 [mV], VI5280 [mV], respectively. The excit-
atory and inhibitory synaptic conductances gE and gI [ms21] normal-
ized by the membrane capacitance obey
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where d(t) is the delta function, Gj, dj, sj are the weight, delay and
spike timing of synaptic input from the j-th neuron, respectively.
The decay constant ts is 2 [ms] and synaptic delays are chosen
randomly between d021 to d011 [ms], where d0 5 2 for excit-
atory-to-excitatory connections and d0 5 1 for other connection
types. The values are determined from the stability of spontaneous

activity (Methods). Spike threshold is Vthr5 250 [mV] and v is reset
to Vr 5 260 mV after spiking. The refractory period is 1 [ms].

The values of Gi for excitatory-to-excitatory connections are dis-
tributed such that the amplitude of EPSPs x measured from the
resting potential obey a lognormal distribution

p xð Þ~
exp { log x{mð Þ2

#
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$ %
ffiffiffiffiffi
2p
p

sx
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on each neuron (Fig. 1a), where the values s51.0 and m-s2 5 log(0.2)
well replicate the experimentally observed long-tailed distributions
of EPSP amplitudes33,34. We declined any unrealistic value of Gi that
gives an amplitude larger than 20 [mV] by drawing a new value
from the distribution. The resultant amplitude of strongest EPSP
was about 10 [mV] on each neuron. For simplicity, excitatory-
to-inhibitory, inhibitory-to-excitatory and inhibitory-to-inhibitory
synapses have uniform values of Gi50.018, 0.002 and 0.0025,
respectively. Excitatory-to-excitatory synaptic transmissions fail at
an EPSP amplitude-dependent rate of pE 5 a/(a1EPSP), where
a50.1 [mV]34.

We first demonstrate numerically that the long-tailed distribution
of EPSP amplitudes achieves aperiodic stochastic resonance for spike
sequence on a single neuron receiving random synaptic inputs
(Fig. 1b). Stochastic resonance refers to a phenomenon wherein a
specific level of noise enhances the response of a nonlinear system to
a weak periodic or aperiodic stimulus35–37, and has been observed in
many physical and biological systems38–45. We vary the average mem-
brane potential of the neuron by changing the rate of presynaptic
spikes at a portion of the weakest excitatory synapses (EPSP ampli-
tudes , 3 mV). Interestingly, the cross-correlation coefficients
(C.C.) between output spikes and inputs to the strongest synapses
are maximized at a subthreshold membrane potential value about 10
[mV] above the resting potential and 10 [mV] below firing threshold
(Fig. 1c). At more hyperpolarized levels of the average membrane
potential, even an extremely strong EPSP (,10 mV) cannot evoke a
postsynaptic spike, and the fidelity of spike transmission is reduced.
On the contrary at more depolarized average membrane potentials,
the neuron can fire without strong inputs, also degrading the fidelity.

We can express the C.C.s in terms of the conditional probability of
spiking by strong-sparse input, which we can analytically obtain
from the stochastic differential equations for weak-dense synapses
(Methods). The analytic results well explain the optimal neuronal
response obtained numerically (Fig. 1c). The phenomena can be
regarded as stochastic resonance for aperiodic spike inputs36,37. We
find that the stochastic enhancement of spike transmission is much
weaker in a neuron (Fig. 1c, dashed curve) having Gaussian-distrib-
uted EPSP amplitude, which give the same mean and variance of
synaptic conductances as the lognormal distribution but no tails of
strong synapses (Supplementary Methods). The results prove the
advantage of long-tailed distributions of EPSP amplitude.

We confirmed the above model’s prediction by performing
dynamic clamp recordings from cortical neurons (n514). To mimic
synaptic bombardment with long-tailed distributed EPSP ampli-
tudes, we injected the synaptic current given in equation (2) by using
the same values of excitatory and inhibitory conductances as used in
Fig. 1c (Supplementary Methods). The rate of random synaptic
inputs was varied in a low-frequency regime. The physiological result
also demonstrated the maximization of the fidelity of synaptic trans-
mission (Fig. 1d, e).

Now, we ask whether the above stochastic resonance is achievable
by the noise generated internally by SSWD recurrent neural net-
works. To see this, we conduct numerical simulations of equations
(1) and (2) for a network model of 10000 excitatory and 2000
inhibitory neurons that are randomly connected with coupling
probabilities of excitatory and inhibitory connections being 0.1 and
0.5, respectively. Since the network has a trivial stable state in which
all neurons are in the resting potentials, we briefly apply external
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Figure 1 | Maximizing the fidelity of spike transmission with long-tailed
sparse connectivity. (a) Each excitatory neuron has a lognormal amplitude
distribution of EPSPs. The resultant mean and variance of the model are
0.89 [mV] and 1.12 [mV2], respectively, whereas those shown in a previous
experiment [1] were 0.77 [mV] and 0.92 [mV2]. Inset is a normal plot of the
same distribution. (b) Schematic illustration of the neuron model with
strong-sparse and weak-dense synaptic inputs. Colors (red, green and blue)
indicate inputs to the top three strongest weights. (c) C.C.s between the
output spike train and input spike trains at the 1st (red), 2nd (green) and
3rd (blue) strongest synapses on a neuron are plotted against the mean
membrane potential and the corresponding input firing rate at each synapse.
The dashed line and shaded area show the mean and SD of the membrane
potential distribution of excitatory neurons shown in Fig. 2f for the SSWD
network. Vertical bars represent SEM over different realizations of random
input. The dashed line indicates an analytical curve for the strongest synapse
of the long-tailed distribution, while the dot-dashed line is the C.C.s for the
strongest synapse when EPSP amplitudes obey Gaussian distribution. (d)
Similar C.C.s obtained by dynamic clamp recordings from a cortical neuron.
The color code and vertical bars are the same as in C. (e) The trial-averaged
C.C.s for the strongest synapses on n514 neurons.
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VL5270 [mV], VE50 [mV], VI5280 [mV], respectively. The excit-
atory and inhibitory synaptic conductances gE and gI [ms21] normal-
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where d(t) is the delta function, Gj, dj, sj are the weight, delay and
spike timing of synaptic input from the j-th neuron, respectively.
The decay constant ts is 2 [ms] and synaptic delays are chosen
randomly between d021 to d011 [ms], where d0 5 2 for excit-
atory-to-excitatory connections and d0 5 1 for other connection
types. The values are determined from the stability of spontaneous

activity (Methods). Spike threshold is Vthr5 250 [mV] and v is reset
to Vr 5 260 mV after spiking. The refractory period is 1 [ms].

The values of Gi for excitatory-to-excitatory connections are dis-
tributed such that the amplitude of EPSPs x measured from the
resting potential obey a lognormal distribution
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on each neuron (Fig. 1a), where the values s51.0 and m-s2 5 log(0.2)
well replicate the experimentally observed long-tailed distributions
of EPSP amplitudes33,34. We declined any unrealistic value of Gi that
gives an amplitude larger than 20 [mV] by drawing a new value
from the distribution. The resultant amplitude of strongest EPSP
was about 10 [mV] on each neuron. For simplicity, excitatory-
to-inhibitory, inhibitory-to-excitatory and inhibitory-to-inhibitory
synapses have uniform values of Gi50.018, 0.002 and 0.0025,
respectively. Excitatory-to-excitatory synaptic transmissions fail at
an EPSP amplitude-dependent rate of pE 5 a/(a1EPSP), where
a50.1 [mV]34.

We first demonstrate numerically that the long-tailed distribution
of EPSP amplitudes achieves aperiodic stochastic resonance for spike
sequence on a single neuron receiving random synaptic inputs
(Fig. 1b). Stochastic resonance refers to a phenomenon wherein a
specific level of noise enhances the response of a nonlinear system to
a weak periodic or aperiodic stimulus35–37, and has been observed in
many physical and biological systems38–45. We vary the average mem-
brane potential of the neuron by changing the rate of presynaptic
spikes at a portion of the weakest excitatory synapses (EPSP ampli-
tudes , 3 mV). Interestingly, the cross-correlation coefficients
(C.C.) between output spikes and inputs to the strongest synapses
are maximized at a subthreshold membrane potential value about 10
[mV] above the resting potential and 10 [mV] below firing threshold
(Fig. 1c). At more hyperpolarized levels of the average membrane
potential, even an extremely strong EPSP (,10 mV) cannot evoke a
postsynaptic spike, and the fidelity of spike transmission is reduced.
On the contrary at more depolarized average membrane potentials,
the neuron can fire without strong inputs, also degrading the fidelity.

We can express the C.C.s in terms of the conditional probability of
spiking by strong-sparse input, which we can analytically obtain
from the stochastic differential equations for weak-dense synapses
(Methods). The analytic results well explain the optimal neuronal
response obtained numerically (Fig. 1c). The phenomena can be
regarded as stochastic resonance for aperiodic spike inputs36,37. We
find that the stochastic enhancement of spike transmission is much
weaker in a neuron (Fig. 1c, dashed curve) having Gaussian-distrib-
uted EPSP amplitude, which give the same mean and variance of
synaptic conductances as the lognormal distribution but no tails of
strong synapses (Supplementary Methods). The results prove the
advantage of long-tailed distributions of EPSP amplitude.

We confirmed the above model’s prediction by performing
dynamic clamp recordings from cortical neurons (n514). To mimic
synaptic bombardment with long-tailed distributed EPSP ampli-
tudes, we injected the synaptic current given in equation (2) by using
the same values of excitatory and inhibitory conductances as used in
Fig. 1c (Supplementary Methods). The rate of random synaptic
inputs was varied in a low-frequency regime. The physiological result
also demonstrated the maximization of the fidelity of synaptic trans-
mission (Fig. 1d, e).

Now, we ask whether the above stochastic resonance is achievable
by the noise generated internally by SSWD recurrent neural net-
works. To see this, we conduct numerical simulations of equations
(1) and (2) for a network model of 10000 excitatory and 2000
inhibitory neurons that are randomly connected with coupling
probabilities of excitatory and inhibitory connections being 0.1 and
0.5, respectively. Since the network has a trivial stable state in which
all neurons are in the resting potentials, we briefly apply external
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Figure 1 | Maximizing the fidelity of spike transmission with long-tailed
sparse connectivity. (a) Each excitatory neuron has a lognormal amplitude
distribution of EPSPs. The resultant mean and variance of the model are
0.89 [mV] and 1.12 [mV2], respectively, whereas those shown in a previous
experiment [1] were 0.77 [mV] and 0.92 [mV2]. Inset is a normal plot of the
same distribution. (b) Schematic illustration of the neuron model with
strong-sparse and weak-dense synaptic inputs. Colors (red, green and blue)
indicate inputs to the top three strongest weights. (c) C.C.s between the
output spike train and input spike trains at the 1st (red), 2nd (green) and
3rd (blue) strongest synapses on a neuron are plotted against the mean
membrane potential and the corresponding input firing rate at each synapse.
The dashed line and shaded area show the mean and SD of the membrane
potential distribution of excitatory neurons shown in Fig. 2f for the SSWD
network. Vertical bars represent SEM over different realizations of random
input. The dashed line indicates an analytical curve for the strongest synapse
of the long-tailed distribution, while the dot-dashed line is the C.C.s for the
strongest synapse when EPSP amplitudes obey Gaussian distribution. (d)
Similar C.C.s obtained by dynamic clamp recordings from a cortical neuron.
The color code and vertical bars are the same as in C. (e) The trial-averaged
C.C.s for the strongest synapses on n514 neurons.
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