Chaos-based Cryptography: an overview

Ljupco Kocarev1, José M. Amigó2, and Janusz Szczepański3

1 Institute for Nonlinear Science
University of California San Diego
950 Gilman Drive, La Jolla, CA 92039–0402, USA
Email: lkc@ucsd.edu
2 Centro de Investigación Operativa,
Universidad Miguel Hernández, 03202 Elche, Spain.
3 Institute for Fundamental Technological Research,
Polish Academy of Sciences, Swietokrzyska 21, PL-00-049 Warsaw, Poland.

Abstract—We review some of the recent work on chaos-based cryptography. We argue that if a chaotic map f is used in cryptography, then it should be implemented as a bijection $F_M : D \to D$, where D is a finite set with cardinality M, such that, for large M, F_M ‘approximates well’ the chaotic map f. Several examples, including chaotic block cypher and chaotic public-key encryption algorithm, are given.

2. Chaotic cryptographic primitives

Let $f : S \to S$ be an N-dimensional chaotic map. For simplicity, we assume that the phase space S is either an N-dimensional cube $[0, 1]^N$ or an N-dimensional torus. Let $F_M : [0, 1, \ldots, M-1]^N \to [0, 1, \ldots, M-1]^N$ be a bijection which is generated from f (we do not specify here how F_M is defined, however some examples will be presented below).

Definition 2.1 We say that F_M is a chaotic cryptographic primitive if for large M, F_M approximates well the chaotic map f.

Although the above definition is intuitive, it does not say anything unless the phrase approximates well is precisely defined. However, this is beyond the scope of the paper, and therefore, we present only examples.

Example 2.2 Let $D = [0 / M, 1 / M, \ldots, (M - 1) / M]^N$ and

$$f_M : D \to D$$

be a bijection induced by f when the phase space $[0, 1]^N$ is discretized (quantized) with $[0 / M, 1 / M, \ldots, (M - 1) / M]^N$. We assume that as the discretization becomes finer, or as M goes to infinity, f_M approaches f; in this sense, we say f_M approximates well f. Clearly, the map f_M induces a map $F_M : [0, 1, \ldots, M-1]^N \to [0, 1, \ldots, M-1]^N$ in a natural way.

Example 2.3 Let X be a set, \mathcal{A} a σ-algebra of subsets of X and μ a positive measure on (X, \mathcal{A}). Suppose T is an automorphism of the space (X, \mathcal{A}, μ), i.e., T is a one-to-one map of X onto itself such that, for all $A \in \mathcal{A}$, we have TA, $T^{-1}A \in \mathcal{A}$ and $\mu(A) = \mu(TA) = \mu(T^{-1}A)$. We consider sequences of finite partitions $\{P_n\}$ of the space X and sequences of automorphisms $\{T_n\}$ such that T_n preserves P_n. The automorphism T_n preserves the partition P_n, if it sends every element of P_n into an element of the same partition.

An automorphism T of the space (X, \mathcal{A}, μ) possesses an approximation by periodic transformations with speed μ. Small α-numeral methods are used to show that, for small α, T approximates μ.

f(n), if there exists a sequence of automorphisms T_n preserving T_n such that

$$\sum_{k=1}^{q} \mu(T_f P_n k) A T_n P_n k < f(q_n), \ n = 1, 2, \ldots$$

where \triangle stands for symmetric set difference and f is a function on the integers such that $f(n) \to 0$ monotonically.

Definition 2.4 We say that a cipher (block cipher, stream cipher, or public-key algorithm) is chaotic if its building blocks (for example, S-boxes, diffusion transformations, one-way functions, and so on) are chaotic cryptographic primitives.

3. Examples of chaotic primitives

3.1. Finite-state tent map

For a positive integer $M \geq 2$, let $f_A : [0, M] \to [0, M]$, $0 < A < M$ be a re-scaled skew tent, defined as

$$F_A = \begin{cases} X/A, & (0 \leq X \leq A), \\ (M - X)/(M - A), & (A < X \leq M). \end{cases}$$

The map F_A is one-dimensional, exact, and therefore mixing and ergodic. The Lyapunov exponent λ is given by

$$\lambda = -\frac{A}{M} \log \frac{A}{M} - \frac{M - A}{M} \log \frac{M - A}{M}. \quad (1)$$

The finite-state tent map $F_A : \{1, 2, \ldots M\} \to \{1, 2, \ldots M\}$ is defined as

$$F_A(X) \equiv \begin{cases} \left\lfloor \frac{M}{A} X \right\rfloor, & (1 \leq X \leq A), \\ \left\lfloor \frac{M}{M-A} (M - X) \right\rfloor + 1, & (A < X \leq M). \end{cases} \quad (2)$$

Note that F_A is a bijection.

3.2. Finite-state Chebyshev maps

Chebyshev polynomial map $T_p : R \to R$ of degree p is defined using the following recurrent relation:

$$T_{p+1}(x) = 2xT_p(x) + T_{p-1}(x),$$

with $T_0 = 1$ and $T_1 = x$. The interval $[-1, 1]$ is invariant under the action of the map T_p. $T_p([-1, 1]) = [-1, 1]$. Therefore, the Chebyshev polynomial restricted to the interval $[-1, 1]$ is a well-known chaotic map for all $p > 1$: it has a unique absolutely continuous invariant measure with positive Lyapunov exponent $\ln p$. For $p = 2$, the Chebyshev map reduces to the well-known logistic map. Finite-state Chebyshev map $F_p : [0, 1, \ldots, N - 1] \to [0, 1, \ldots, N - 1]$ is defined as:

$$y = T_p(x) \mod N,$$

where x and N are integers.

3.3. Finite-state two-dimensional torus automorphisms

Another prototype of a chaotic map is a torus automorphism. An automorphism of the two-torus is implemented by 2×2 matrix M with integer entities and determinant ± 1. The requirement that the matrix M has integer entities ensures that M maps torus into itself. The requirement that the determinant of the matrix M is ± 1 guarantees invertibility.

Let M be a 2-torus automorphism

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix} \mod 1, \quad (5)$$

where $x, y \in [0, 1]$. Let $2k$ be the trace (which is an integer) of the automorphism M. It is well-known that for $k > 1$ (we will consider only positive k) that the automorphism M has strong chaotic properties, and in particular, it has a dense set of unstable periodic orbits.

Finite-state 2d torus map is defined as

$$\left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{array} \right) = \left(\begin{array}{cc} g+1 & g \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) \mod 256, \quad (6)$$

where $X_1, X_2, Y_1, Y_2 \in P_S$, and $P_i = \{0, 1, \ldots, 255\}$. This map can serve as a diffusion layer because its inverse is well-defined on the integer space on which cryptographical transformations are based. A special case $g = 1$ is known as the pseudo-Hadamard transform (PHT). The PHT is used in various cryptosystems because it requires only two additions in a digital processor.

An example of a finite-state four-dimensional torus is given by:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{bmatrix} = G \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} \mod 256, \quad (7)$$

where $X_i, Y_i \in P_S \ (1 \leq i \leq 4)$ and $G = (g_{ij}), 0 \leq g_{ij} \leq 255 \ (1 \leq i, j \leq 4)$.

4. Examples of chaotic encryption algorithms

4.1. Substitutions based on the approximation of mixing maps

Let F be a permutation of n-bit blocks and, as usual, denote by LP_F and DP_F the linear approximation probability and differential approximation probability of F, respectively (see [8] for precise definitions of these ‘probabilities’). LP_F and DP_F measure the immunity of the block cipher F to attacks mounted on the corresponding cryptanalysis, immunity being higher the smaller their values. In [8] we have shown that if F is a cyclic periodic approximation of a mixing automorphism and some assumptions are fulfilled, then LP_F and DP_F get asymptotically close to their greatest lower bounds $1/2^n$ and $1/2^{2n-1}$, respectively, thus obtaining an arbitrarily close-to-optimal immunity to both
Mixing transformation

...for which the elements of the matrix

tional algebraic methods.

Shannon, that mixing transformations may indeed be used
cryptanalyses. Therefore, we have proven, as suggested by

As an example we consider the 2D torus chaotic map,
for which the elements of the matrix

For this map, the corresponding periodic approximation
with $n = 18$ has the following values of DP and LP:

$LP = 0.00002629$ with $|LP - 2^{-18}| \approx 2.25 \times 10^{-5}$, and

$DP = 0.00003052$ with $|DP - 2^{-17}| \approx 2.29 \times 10^{-5}$.

4.2. Public-key encryption algorithm

Finite-state Chebyshev map has been recently suggested
for generalization of RSA public-key encryption algorithm.
The algorithm consists of two algorithms: algorithm for
key generation and algorithm for encryption.

Algorithm for key generation. Alice should do the fol-

1. Generate two large random (and distinct) primes p and
q, each roughly the same size.
2. Compute $N = pq$ and $\phi = (p^2 - 1)(q^2 - 1)$.
3. Select a random integer e, $1 < e < \phi$, such that
$\gcd(e, \phi) = 1$.
4. Compute the unique integer d, $1 < d < \phi$, such that
$ed \equiv 1 \pmod{\phi}$.
5. Alice’s public key is (N, e); Alice’s private key is d.

Algorithm for encryption.

1. Encryption. To encrypt a message m, Bob should do the
following:

(a) Obtain Alice’s authentic public key (N, e).
(b) Represent the message as an integer in the interval
$[1, N - 1]$.
(c) Compute $c = T_e(m) \pmod{N}$ and send to Alice.
2. Decryption. To recover the message m from c, Alice
should do the following:

(a) Use the private key d to recover $m = T_d(c) \pmod{N}$.

The following property of the finite-state Chebyshev
map holds:

$T_d(T_e(x)) \equiv x \pmod{N}$.

This is the crucial property used for design public-key en-
cryption algorithm based on finite-state Chebyshev map,
see [9] for details.

4.3. Block cipher

Recently we have designed a 128-bit chaotic block ci-
pher with the S-boxes defined with the finite tent map
and chaotic mixing transformation defined as finite-state 4-
dimensional torus map [10]. Consider a 128 bit uniform ci-
pher given in Figure 1 for which the mixing transformation
has branch number 4, for the definition of branch number
see [10]. We also consider the Feistel cipher with block di-
agram shown in Figure 2, where the F function is given in
Figure 3. The following theorems are proven in [10]:

Theorem 4.1 Every 4-round differential trail of the uniform
cipher has at least 16 active S-boxes.

Theorem 4.2 Every 4-round differential trail of the Feistel
cipher has at least 10 active S-boxes.

As calculated in [10], the values of DP and LP for the
chaotic S-box are $DP \leq 2^{-4}$ and $LP \leq 2^{-3}$, respectively.
We suggest that the cipher has 16 rounds. With the help of
Theorems 4.1 and 4.2, we can estimate the values of DP
and LP for the whole cipher.

- Chaotic uniform cipher – For the uniform cipher with
block diagram shown in Figure 1, we have $DP \leq 2^{-256}$
and $LP \leq 2^{-192}$.

- Chaotic Feistel cipher – For the Feistel cipher with
block diagram shown in Figure 2, where the F func-
tion is given in Figure 3, we have $DP \leq 2^{-160}$ and
$LP \leq 2^{-120}$.

For an 8 → 8 S-box one has $DP \geq 2^{-7}$ and $LP \geq 2^{-8}$.
We did not attempt to optimize the values of DP and LP
for a chaotic S-box and used $DP \leq 2^{-4}$ and $LP \leq 2^{-3}$.
However, different approaches yield chaos-based S-boxes
with $DP \leq 2^{-5}$ and $LP \leq 2^{-5}$ [8].

5. Conclusions

In this work we have summarized our recent work on
chaos-based cryptography. Although at theoretical level it
seems that chaotic systems are ideal candidates for cryp-
tographic primitives (see for example the statement proven
in [8] that periodic approximations of mixing maps have

Figure 1: Round function of the 128-bit uniform cipher:
each $a_{1,i}, 0 \leq i \leq 15$, is a byte, and the mixing transfor-
mation has branch number 4.
arbitrary close to optimal immunity to linear and differential cryptanalysis), at the practical level chaotic maps are still slower than corresponding conventional cryptographic algorithms. Thus, for example, chaos-based public key algorithm suggested in [9] is slower than RSA, and block encryption algorithm proposed in [10] is also slower than the best conventional algorithms, such as AES.

Acknowledgments

L.K is grateful to K. Aihara, G. Jakimoski, and N. Masuda for stimulating discussions. This research is supported in part by the NSF.

References

