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Abstract—Koopman Operator is a linear but
infinite-dimensional operator defined for a nonlinear
dynamical system and captures full information of the
system. We present a formulation in Reproduced Ker-
nel Hirbert Space (RKHS) for modeling a nonlinear
dynamic system in order to develop relevant linear es-
timators. The KO is represented as a linear estima-
tor in RKHS, and its parameters are determined using
the well-known Gaussian process models. This leads
to structures useable in modeling and nowcasting that
account for the nonlinear behavior of the system.

1. Introduction

Koopman Operator (KO) methods allow us to work
in the linear formulation on analysis of systems whose
underlying dynamics is nonlinear through the knowl-
edge of observations [1, 2]. Although KO becomes
infinite-dimensional (acts on a space of functions de-
fined on the state space of a system, called observ-
ables), it provides full information on the underlying
nonlinear system. While finding the complete solution
to a nonlinear system is in general impossible, we have
abundance of data on observables arising from the dy-
namics and can use them effectively in terms of spectra
of the KO. Various applications of this new view are
reported, for example, in fluid mechanics [2] and power
grids [3].
Reproducing Kernel Hilbert Spaces (RKHS) have

been extensively used by the Machine Learning com-
munity due to the fact that by the virtue of the Gen-
eralized Representer Theorem [4, 5] a linear estima-
tor (to any nonlinear observable-dynamics) can be ex-
pressed and optimized in such spaces, which in turn
provides an estimator with nonlinear properties. Sev-
eral approaches have been presented which combine
the KO method with RKHS [6].
In this short paper, we present a formulation in

RHKS for modeling a nonlinear dynamic system in
order to develop linear estimators. The essence of this
work is to derive a relevant representation of KO from
a finite number of samples of the underlying nonlinear
dynamics. The so-called extended dynamic mode de-
composition [7] and its kernel version [8] are reported
for this line of research. Following [8, 6], we utilize the
kernel idea to generate a finite number of observables
that are defined by the sampled dynamics. Thus, the
RKHS formalism is utilized in the current nonlinear
modeling and linear estimators. Since the structural
complexity of such estimators is in general arbitrary,
we use Tikhonov type regularization based on the well
known Gaussian Process (GP) models [9]. By making
use of the Representer theorem, this leads to structures
useable in modeling and nowcasting that account for
the nonlinear behavior of the system.

2. Koopman Spectral Analysis

Here we provide a brief introduction of KO for
nonlinear dynamic systems and its spectral analysis
[10, 11]. Consider a discrete-time dynamic system
evolving on a finite n dimensional manifold X: for
xk ∈ X and k ∈ Z,

xk+1 = T (xk) (1)

where T maps X to itself and is considered to be non-
linear in general. Here, we do not address the problem
of finding the state evolution xk, but that of the scalar-
valued observable, which is a function of the state x,
g : X → C. In the following, we will use H to repre-
sent a given space of observables, i.e., g ∈ H. Thus,
the evolution of the observable g itself under an iter-
ation of T is represented by the so-called Koopman
Operator (KO) U : H → H such that

Ug = g ◦ T . (2)

Note that U is a linear operator that acts on the func-
tion space H (by choice, it can become the Hilbert
space), and hence it is infinite-dimensional. The de-
composition of an observable in this space in terms
of eigen-functions of U is called the Koopman mode
decomposition [10, 11].

Let ϕi ∈ H\{0} be the i-th eigen-function of U with
eigen-value λi: Uϕi = λiϕi. If g lies in the subspace
spanned by the eigen-functions, then g can be written
as

g(xk) =

∞∑
i=1

ϕi(xk)vi (3)

where vi = ⟨ϕi, g⟩ ∈ C (inner-product defined on H).
In the same manner, for a vector-valued observable
g = (g1, . . . , gm)⊤ where gj ∈ H and ⊤ the transpose
operation, we have

g(xk) =

∞∑
i=1

ϕi(xk)vi (4)

where vi = (⟨ϕi, g1⟩, . . . , ⟨ϕi, gm⟩)⊤ ∈ Cm. From (1)
and the definition of eigen-functions, it is appropriate
to write

ϕi(xk) = (Ukϕi)(x0) = λk
i ϕi(x0). (5)

Thus, we have

g(xk) =

∞∑
i=1

λk
i ϕi(x0)vi, (6)
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and

g(xk) =

∞∑
i=1

λk
i ϕi(x0)vi. (7)

The vector vi is called the Koopman mode [11] of the
dynamic system (1), corresponding to the given ob-
servable g.

3. Review of Linear System Modeling

Consider a linear dynamical system on X = RM

(finite M) given by

xk+1 = Axk, (8)

where xk ∈ RM and A ∈ RM×M . Because we know
the dynamics on X completely in this case, we do not
need to go through the observable space. In [11] the
eigen-values and eigen-vectors of A are related to eigen-
values and eigen-functions of the associated Koopman
operator U.
The eigen-values and vectors of A can be found from

the Krylov method (e.g. [12]), which is extended in the
Koopman mode decomposition of nonlinear dataset
[11]. Now consider a finite number of samples of the
linear state dynamics {x0,x1, . . . ,xm} and construct
the so-called Krylov subspace. spanned by the m − 1
samples {x0,x1, . . . ,xm−1}.

For simplicity of the review, first we introduce the
special case where xm is given by a linear combination
of all the past data, i.e.,

xm = c0x0 + · · ·+ cm−1xm−1 =

m−1∑
i=0

cixi, (9)

where c0, . . . , cm−1 are the coefficients. By defining K
and c as

K = [x0,x1, · · · ,xm−1] , (10)

c = [c0, c1, . . . , cm−1]
⊤
, (11)

we have
xm = Kc. (12)

Here, the data {x1,x2, . . . ,xm} is also represented as

[x1,x2, · · · ,xm] = AK. (13)

Thus, we derive
AK = KC, (14)

where C is the m-dimensional companion matrix de-
fined as

C =


0 0 . . . 0 c0
1 0 0 c1
0 1 0 c2
...

. . .
...

0 0 . . . 1 cm−1

 . (15)

If ui and λi are an eigen-vector and an eigen-value of
C, then multiplying (14) by ui from the right gives

AKui = KCui = Kλui = λKui, (16)

resulting in vi ≡ Kui being the eigenvector of A with
the same eigenvalue. Thus, by computing c from the
data, it is possible to compute the eigen-values and
eigen-vectors of A, namely, obtain the linear dynamic
model.
For a more general case, when xm ̸= Kc, then the

approximate eigenvalue and vector to A is given by
minimizing the error, i.e., the difference between the
actual xm and Kc:

r = xm − Kc. (17)

This is an optimization problem where c is chosen so
that r ⊥ span {x0,x1, . . . ,xm−1}. Thus, we have

AK = KC− re⊤, (18)

where e = [0, . . . , 0, 1]⊤ ∈ RM . The approximate
eigenvalues and vectors of A are given by that of C,
and are called the Ritz vales and vectors [11]. If K is
of full-column rank, then the vector c is found from
(17) as

c =
(
K⊤K

)−1
K⊤xm. (19)

In the Machine learning context, the solution for c
given in (19) is nothing but the result of a linear least-
square-error regression. Below, we present a method
commonly used in Machine learning community to find
such c form nonlinear data set.

4. Nonlinear System Modeling using Gaussian
Processes

4.1. RKHS representation of the Koopman op-
erator

Consider a nonlinear transformation φ(·) into an
RKHS provided by a kernel dot product φ⊤

i φj =
k(xi,xj) and where φ(xi) = φi. The existence of
such a dot product is proved as Mercer’s theorem [13].
Here, we denote the data matrix inside the RKHS as

Km−1 = [φ0, φ1 . . . , φm−1] , (20)

and the kernel matrices of dot products between data
as

Hm−1 = K⊤
m−1Km−1, (21)

hm−1,m = K⊤
m−1φm. (22)

Assume now an estimator

φm = f (Km−1) + rm (23)

where
f (Km−1) = Km−1c (24)

is the Koopman operator represented through the data
matrix inside the RKHS.

A Gaussian Process (GP) approach uses a Bayesian
perspective to adjust the weight vector c by applyimg
a criterion based on maximum likelihood rather than
a minimum mean square error [9]. In general, this per-
spective provides with a solution expressed in terms of
a probability distribution rather than a deterministic
value.
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4.2. Model inference

The GP assumes that r and c are both latent ran-
dom variables for which a probabilistic model should
be provided. For the c, a Gaussian prior distribution
is proposed with the form

p(c) = N (c|0,Σc). (25)

The model also assumes that rm is a Gaussian random
variable whose components are zero mean, indepen-
dent and identically distributed (i.i.d.) with variance
σ2
n. Thus, the corresponding likelihood is a Gaussian

distribution expressed as

p(rm|c,Km−1) = N (rm|0, σ2
nI). (26)

Therefore, φm is also a random variable whose mean
is precisely f (Km−1), this is

p(φm|c,Km−1) = N (rm|Km−1c, σ
2
nI). (27)

The goal of the GP method is to maximize this likeli-
hood marginalized with respct to the posterior prob-
ability distribution of c with respect to the observa-
tions. This posterior can be found by virtue of the
Bayes’ rule as

p(c|Km−1) ∝ p(c)p(φm|c,Km−1). (28)

Since this product is a product of Gaussians, the re-
sult is a square exponential, which needs to be further
normalize to have probability distribution properties.
The solution of this expression, given (25) and (27), is

p(c|Km−1) = N (c|c̄,A−1) (29)

where

c̄ = σ−2
n A−1K⊤

m−1φm,

A = σ−2
n K⊤

m−1Km−1 + Σ−1
c .

(30)

Therefore, we can express c̄ and A in terms of the
kernel matrix (21) and vector (22) as

c̄ =
(
Hm−1 + σ2

nΣ
−1
c

)−1
hm−1,m,

A = σ−2
n Hm−1 + Σ−1

c .
(31)

Since the distribution is a Gaussian, the mean is
also the maximum a posteriori (MAP) of the distri-
bution, and the covariance expresses, in particular, a
confidence interval on the estimation of the parame-
ters. The expression is computed as a function of ker-
nel dot products, thus it still exists when the RKHS is
of infinite dimension.
Assume now that the kernel matrix Hm−1 in (31)

is constructed using a kernel function k(·, ·) that de-
pends on a set of parameters. The matrix A will thus
depend on these parameters, plus the variance param-
eter σ2

n. If the whole set of parameters is denoted as
θ = [θ1, . . . , θJ ]

⊤, the optimization of the estimator
can be performed by maximization of the posterior of
c with respect to θ, this is

θMAP = arg max
θMAP

log p(c|Km−1,θ)|c=c̄. (32)

By taking derivatives with respect to the parameters
and equaling them to zero, we find

d log p(c|Km−1,θ)

dθj

∣∣∣∣
c=c̄

= −1

2
tr

(
A
dA−1

dθj

)
, (33)

which can be used to maximize the log posterior with
respect the parameters using a simple gradient de-
scent.
Assuming that a new set of observations x∗

j , 0 ≤ j ≤
m− 1, is available, then a prediction φ∗

m can be com-
puted. The predictive distribution for this sample can
be computed by marginalizing the distribution of the
prediction f ∗ = f (φm) with respect to the parameter
vector c. This marginalization produces a Gaussian
distribution with mean f̄ ∗ and covariance Cf ∗ :

f̄ ∗ = K∗
m−1c,

Cf ∗ = K∗
m−1A

−1K∗⊤
m−1.

(34)

These two elements are a vector and a matrix that
live in the RKHS, thus they are, in general, of infi-
nite dimension. Nevertheless, they are expressed in a
subspace of dimension m. The projection of the pre-
diction in these space will have a covariance matrix
that can be expressed as

Cf ∗ = H∗A−1H∗⊤ (35)

where H∗ = K∗⊤
m−1Km−1 is a matrix containing all dot

products between the test data K∗
m−1 and training

data Km−1

4.3. A GP model for the prediction preimage

Still, the vector f̄ ∗ lives into the RKHS. In order to
recover a prediction into the original space, one can
apply a preimage procedure, by projecting the predic-
tion into the input space using a projection matrix.
This is, for an arbitrary prediction f ∗, a projection x
into the input space can be written as

xm = W⊤ f̄ ∗ + e (36)

where e is the projection error. This error can be
considered a Gaussian vector whose components have
zero mean and variance σ2

m, 1 ≤ m ≤ M . Again, the
matrix W can be considered a latent variable with a
Gaussian prior, and then a posterior for this variable
can be maximized. Moreover, it can be assumed that
the RKHS has infinite dimension, and using the Gen-
eralized Representer Theorem [4, 5], this vector has a
dual representation in terms of a linear combination of
a training data, this is

W = Km−1B (37)

where B is a matrix of coefficients of finite dimension,
and Km−1 a set of (training) data into the RKHS.
Thus, we have

x = B⊤K⊤
m−1 f̄

∗ + e. (38)

The projection then becomes

x = B⊤K⊤
m−1K∗

m−1c+ e

= B⊤H∗⊤c+ e.
(39)
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A multiple input multiple output Gaussian process
scheme is presented in [14] that can be applied here
directly. While in that work the approach is nonlinear,
in this case, we only need to apply a particularization,
where the projection is a linear one, since H∗c is a finite
dimension vector. The benefits of using this approach
instead of a standard least squares preimage solution
are based on the fact that the GP approach applies a
prior over the parameters that regularizes the solution.
The optimum regularization includes the estimation of
the noise variances σ2

m, which is performed by simply
maximizing the log likelihood of the data with respect
to these parameters.

5. Conclusion

Nonlinear system modeling using the Koopman op-
erator can be straightforwardly applied using the so
called “rather old kernel trick”, which consists on a
nonlinear transformation into a Hilbert space endowed
with a kernel dot product. Such procedure provides
the operator with nonlinear properties, and an arbi-
trary expressive capacity if the RKHS is of infinite di-
mension. This is the case when the kernel dot product
is, for example, of the exponential family, for exam-
ple, if a square exponential or a Matérn function is
used (see e.g. [15]). In these cases, a regularization
of the operator is preceptive. Indeed, if the space has
infinite dimension, then the complexity of the estima-
tor becomes arbitrary, and it is guaranteed to overfit
[16]. In this short paper, we briefly present a nonlin-
ear version of the operator, and then we propose the
use of the well known Gaussian Processes (GP) for
the parameter estimation. The GP method proposes
the use of a Bayesian approach to the estimation of
the parameters by using a prior distribution for them
that, in turn, acts as a regularizer that minimizes the
overfitting of the model.
The inference of the linear linear parameters is given

as in the standard GP presented in [9]. The inference
to find optimal values for the kernel and noise param-
eters can be done by maximizing the log posterior of
the linear ones.
The prediction model is formulated into the RKHS,

so a preimage technique is needed if the prediction
needs to be expressed into the input space. In general,
this problem does not have an exact solution. It can
be ill posed easily lead to overfitting. Therefore, a
regularized solution is needed.
We use a straightforward application of the Gener-

alized represented theorem, we show that this task is
performed by a simple linear transformation matrix,
that can be, in turn, optimized using any linear al-
gorithm. While procedures as the Ridge Regression
[17] are straightforward and there are regularized, we
propose the use of a MIMO or multitask GP model
for the estimation, due to its optimal regularization
capabilities, through the use of Bayesian inference to
optimize the transformation. Besides, this approach
produces a probabilistic model of the prediction that
can be useful to estimate the confidence intervals of
the prediction.
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