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Abstract—We proposed a deterministic particle swarm
optimizer, called piecewise-linear particle swarm optimizer
(PPSO). In PPSO, each particle has two search modes
which are a convergence mode and a divergence mode,
and switches both search modes irregularly. PPSO is ef-
fective to solve non-separable problems, however, it has
not been clarified how dynamics of particles contribute to
search performances for the non-separable problems. Here,
we focused on and investigated a search direction of PPSO
particles. In addition, in order to improve search perfor-
mances of PPSO, a neighborhood topology between parti-
cles is introduced to PPSO. We further compared the search
performances of PPSO with those of deterministic PSO,
and classic PSO in the numerical simulations.

1. Introduction

Here, in order to solve a real-parameter optimization
problem, various optimization algorithms have been pro-
posed. The optimization problem for minimizing its evalu-
ation value is defined by the following equation:

minimize f (x), x = {x1, x2, . . . , xD}⊤ ∈ F ⊆ Rn (1)

where f : Rn → R is an objective function, n is the
number of dimensions, and F is a search space. Al-
though there are many real-world optimization problems,
it is difficult to know gradient information of the prob-
lem, whether a landscape of the problem is unimodal or
multimodal, or whether the problem is separable or non-
separable. These optimization problems are called black-
box optimization problems in which we can use only eval-
uation value of f (x). Various metaheuristics which can
solve black-box optimization problems effectively, have
been proposed. However, because a search space of such
black-box optimization problem is large-scale and compli-
cated, it is difficult to solve the problem. As such, powerful
metaheuristics is required to search for a good quality of
solution effectively.

Particle swarm optimization (PSO) is one of the
stochastic population-based metaheuristics developed by J.
Kennedy and R. C. Eberhart [1]. PSO algorithm simulates
social behaviors of creatures such as fish schooling or bird
flocking. The creatures are represented by particles as solu-
tion candidates, which fly a search space by sharing the best

solution information in a swarm. PSO algorithm is very
simple and is easy to implement to applications. PSO can
search the search space without analytical information such
as gradient of objective functions. As such, PSO algorithm
has been applied to various applications. However, search
performances of PSO are worse in solving non-separable
problems. Because, PSO algorithm does not have rota-
tional invariant and the search direction of particle tends
to be biased in parallel to the coordinate axes [3].

In our previous research, piecewise-linear particle
swarm optimizer (PPSO) which has a convergence mode
and a divergence mode was proposed [4], which is one
of the deterministic PSO (DPSO). A particle of PPSO
switches both search modes dynamically, and PPSO is ef-
fective for solving non-separable problems. We considered
that the search direction of PPSO particle does not tend to
be biased to the coordinate axes, and then particles of PPSO
can move in a search space freely more than those of PSO.

Here, in order to improve search performances of PPSO,
a neighborhood topology between particles is introduced
to PPSO algorithm. PSO with the neighborhood topology
(N-PSO) is effective for solving multimodal problems [2].
In N-PSO, particles can only exchange good solution infor-
mation between specific particles, and “Degree” is the to-
tal number of particles which can exchange good solution.
When Degree is small, particles tend to move in a search
space independently, and this behavior can prevent parti-
cle to converge to a local optimum solution prematurely.
Therefore, it is considered that PPSO with the neighbor-
hood topology (N-PPSO) is more effective in solving mul-
timodal problems than the classic PPSO. In order to clar-
ify that N-PPSO is more effective than PPSO in solving
multimodal problems, we evaluated search performances
through numerical experiments.

2. Piecewise-linear particle swarm optimizer

The basic idea of PPSO is explained bellow. The ith par-
ticle of PPSO has velocity vector vt

i = (vt
i1, v

t
i2, . . . , v

t
iD), po-

sition vector xt
i = (xt

i1, x
t
i2, . . . , x

t
iD), and the personal best

vector pbestt
i = (pbt

i1, pbt
i2, . . . , pbt

iD), and has the con-
vergence and divergence modes. Each particle shares the
global best vector gbestt = (gbt

1, gbt
2, . . . , gbt

D) in a swarm.
D denotes the number of design variables, and t denotes
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(a) The trajectory of PPSO for the convergence mode
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(b) The trajectory of PPSO for the divergence mode

Figure 1: Particle trajectory of PPSO

current iteration.
The updating rules of the jth component of the ith parti-

cle in the swarm are given by the following equations.

qt
i j = (1 − γ)pbt

i j + γgbt
j (2)

yt
i j = xt

i j − qt
i j (3)

[
vt+1

i j
yt+1

i j

]
= δti j

[
cosθ –sinθ
sinθ cosθ

] [
vt

i j
yt

i j

]
(4)

where qt
i j denotes an equilibrium point, γ (0 ≤ γ ≤ 1) de-

notes a connection parameter between pbt
i j and gbt

j. When
γ = 0.5, the impact of pbi j and gb j is the same, and we set
γ = 0.5 in this paper. yt

i j denotes a relative position from
the equilibrium point qt

i j to the ith particle’s position xt
i j.

δti j denotes a damping factor, and θ (0 < θ < π
2 ) denotes

a rotational angle. When 0 < δc < 1 (i.e., δti j = δc; the
convergence mode), a particle converges to the equilibrium
point qt

i j gradually. While, when δd > 1 (i.e., δti j = δd; the
divergence mode), the particle leaves from the equilibrium
point gradually. Equation (4) is a discrete-time linear sys-
tem if δti j and qt

i j are static. Hence, PPSO is regarded as a
kind of piecewise-linear systems. The switching rule from
the convergence mode to the divergence mode is given by
the following equation.{

vt
i j · vt+1

i j < 0
|yt+1

i j | < T Ht
i j

(5)

where T Ht
i j denotes a switching threshold in each search

mode. If the search mode of a particle is switched to the
divergence mode, the particle updates its own information
by Eq. (6). 

δt+1
i j = δd

vt+1
i j = 0

T Ht+1
i j = αT Ht

i j

(6)

where α (0 < α < 1) denotes a scale parameter of T Ht
i j.

T Ht
i j is only updated at the end of the convergence mode.

On the other hand, the switching rule from the diver-
gence mode to the convergence mode is given by the fol-
lowing equation. {

vt
i j · vt+1

i j < 0
|yt+1

i j | > T Ht
i j

(7)

If the search mode of a particle is switched to the conver-
gence mode, the particle updates its own information by
Eq. (8). {

δt+1
i j = δc

vt+1
i j = 0 (8)

Figure 1 shows an example of a particle trajectory of
PPSO. As shown in Fig. 1 (a), the particle in the conver-
gence mode (i.e., δti j = δc) searches around the equilibrium
point and converges to the equilibrium point (P0 ∼ P4).
Gray regions denote switching conditions for the diver-
gence mode. In case of P5, the conditions v4

i j · v5
i j < 0

and |y5
i j| < T H4

i j are satisfied, then the particle search mode
is switched from the convergence mode to the divergence
mode. Furthermore, the particle velocity is set to 0 (P+5 ),
and then T H5

i j is updated by Eq. (6).
On the other hand, as shown in Fig. 1 (b), the particle in

the divergence mode (i.e., δti j = δd) leaves from the equi-
librium point (P0 ∼ P4). Gray regions denote switching
conditions for the convergence mode. In case of P5, the
conditions v4

i j · v5
i j < 0 and |y5

i j| > T H4
i j are satisfied, and

then the particle search mode is switched from the diver-
gence mode to the convergence mode. Furthermore, the
particle velocity is set to 0 (P+5 ).

In the initial search stage, since each particle should
search a search space globally, the switching threshold
T H0

i j should be a large value and the particle can search the
search space globally. Hence, each particle searches the
search space away from the equilibrium point in the initial
search stage, and moves to the equilibrium point gradually.
In the final search stage, each particle searches around the
equilibrium point intensively.
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Figure 2: The trajectories of PPSO particles (δc = 0.6, δd =
1.2, α = 0.95)
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Figure 3: The angles of velocity of PPSO particles (δc =
0.6, δd = 1.2, α = 0.95)

3. Behaviors of PPSO particles

In this section, the behaviors of PPSO particles are ex-
plained. In PPSO, there are parameters which control a
particle trajectories and biases of movement toward coor-
dinate axes. Figure 2 shows the trajectories of PPSO par-
ticles in solving 2 dimensional rotated rastrigin’s function,
the search range of which is [−100, 100]. As shown in Fig.
2, particles with θ = 55◦ can search various regions of a
search space more than those with θ = 5◦.

Figure 3 shows the frequency of angles of velocity vec-
tors in solving 20 dimensional rotated rastrigin’s function.
The angles of velocity denotes a search direction, which is
computed using two different axes selected randomly. We
counted the number of angles of all particles. When the
frequency count becomes large at the angles of 0◦, ±90◦,
and ±180◦, while being small at the angles of ±45◦ and
±135◦, as shown in Fig. 3 (2), the search direction of par-
ticles tends to be biased in parallel to the coordinate axes
(see Fig. 2 (2)). In contrast, when the frequency count in
Fig. 3 (1) becomes larger at the angle of ±45◦ and ±135◦

than that in Fig. 3 (2), the search direction of particles is
not biased in parallel to the coordinate axes (see Fig. 2 (1)).
Thus, the particles of (1) can move in a search space with-
out depending on the directions in parallel to the coordinate
axes more than those of (2).

4. PPSO with neighborhood topology

In this section, PSO with a neighborhood topology (N-
PSO) is explained. In the classic PSO, all particles share
information of the global best solution (gbest) in a swarm,
the topology of which is called gbest topology. On the

(1) Degree = 2 (2) Degree = 7

Figure 4: Neighborhood topology
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Figure 5: The angle of velocity of particles (Degree = 2)

other hand, each particle shares information of good so-
lution (lbest) between specific particles, the topology of
which is called lbest topology. In lbest topology, “Degree”
denotes the total number of particles which can exchange
information of good solution between neighborhood parti-
cles. Figure 4 shows neighborhood topology of particles,
and the number of particles is 8. As shown in Fig. 4 (1),
when Degree is small, information of lbest is propagated
to all particles slowly, and all particles can not converge
to lbest prematurely. This behavior is effective in solv-
ing multimodal problems. As shown in Fig. 4 (2), when
Degree is large, information of lbest is propagated to all
particles quickly, and then all particles can converge to a
local optimum solution prematurely. Therefore, Degree
controls a convergence performance of particles.

Slow convergence characteristic of N-PSO (i.e., Degree
is small) is effective in solving multimodal problems, be-
cause each particle tends to search its own search region,
and then, particles can search a search space globally.
However, in N-PSO, the search direction of particles tends
to be biased in parallel to the coordinate axes (see Fig. 5
(1)), it is not effective in solving non-separable problems.

In PPSO, particles can move in a search space freely
without depending on the coordinate axes of a problem.
This characteristic is also the same when the neighborhood
topology is introduced to PPSO (see Fig. 5 (2)). As such, in
order to improve search performances of PPSO in solving
non-separable multimodal problems, we considered that it
is effective to introduce the neighborhood topology into
PPSO (N-PPSO).

5. Numerical experiments

In this section, search performances of N-PPSO were
evaluated compared with N-DPSO and N-PSO. The num-
ber of particles (N) is 20, the maximum iteration (tmax) is
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Table 1: Comparison results
N-PPSO N-PSO N-DPSO

f Degree 2 19 2 19 2 19
f U
2 Mean 2.05E+06 1.56E+06 2.84E+06 7.78E+05 7.45E+07 7.35E+07

SD 8.63E+05 7.24E+05 1.57E+06 4.31E+05 4.64E+07 5.10E+07
f U
3 Mean 7.79E+06 4.36E+07 1.52E+08 1.20E+08 4.92E+16 7.42E+16

SD 9.91E+06 6.99E+07 2.54E+08 2.16E+08 1.74E+17 4.63E+17
f U
4 Mean 2.77E+04 1.54E+04 4.12E+04 2.09E+04 3.69E+04 5.79E+04

SD 6.25E+03 6.15E+03 1.11E+04 1.01E+04 1.01E+04 1.62E+04
f6 Mean 1.69E+00 1.02E+01 6.27E+00 5.05E+00 4.32E+03 3.48E+03

SD 6.72E+00 2.25E+01 1.63E+01 1.48E+01 2.42E+03 1.93E+03
f7 Mean 9.40E+00 2.04E+01 4.58E+01 9.76E+01 2.83E+05 1.84E+05

SD 5.57E+00 1.64E+01 2.06E+01 1.38E+02 6.03E+05 4.26E+05
f8 Mean 2.09E+01 2.09E+01 2.08E+01 2.08E+01 2.09E+01 2.09E+01

SD 6.18E-02 7.69E-02 8.09E-02 8.50E-02 9.28E-02 7.59E-02
f9 Mean 1.07E+01 1.04E+01 1.87E+01 1.82E+01 2.50E+01 2.49E+01

SD 2.36E+00 2.46E+00 2.27E+00 2.88E+00 2.28E+00 2.60E+00
f10 Mean 1.33E+00 1.13E+00 3.81E-01 2.67E-01 2.14E+03 1.71E+03

SD 1.87E-01 6.30E-02 2.38E-01 2.22E-01 6.71E+02 6.98E+02
f12 Mean 2.52E+01 3.33E+01 6.78E+01 9.93E+01 4.73E+02 4.42E+02

SD 6.72E+00 1.12E+01 2.53E+01 3.89E+01 1.48E+02 1.34E+02
f13 Mean 5.40E+01 7.15E+01 1.01E+02 1.33E+02 4.68E+02 4.75E+02

SD 1.67E+01 2.18E+01 2.02E+01 3.61E+01 1.19E+02 1.54E+02
f15 Mean 1.76E+03 1.91E+03 2.65E+03 2.48E+03 4.62E+03 4.17E+03

SD 4.29E+02 5.38E+02 6.60E+02 6.06E+02 4.83E+02 6.34E+02
f16 Mean 1.35E+00 1.80E+00 1.54E+00 1.63E+00 2.66E+00 2.63E+00

SD 2.79E-01 4.61E-01 3.99E-01 5.00E-01 5.05E-01 6.75E-01
f18 Mean 1.00E+02 1.07E+02 1.17E+02 1.05E+02 4.31E+02 4.31E+02

SD 1.06E+01 1.77E+01 1.68E+01 3.08E+01 9.23E+01 1.07E+02
f19 Mean 4.39E+00 3.93E+00 4.11E+00 4.48E+00 5.04E+04 5.26E+04

SD 1.03E+00 1.47E+00 1.60E+00 2.20E+00 5.96E+04 8.15E+04
f20 Mean 9.89E+00 9.91E+00 1.00E+01 1.00E+01 1.00E+01 9.99E+00

SD 6.43E-01 4.94E-01 4.88E-02 0.00E+00 0.00E+00 8.36E-02
f21 Mean 3.62E+02 3.38E+02 2.76E+02 3.24E+02 1.40E+03 1.30E+03

SD 7.30E+01 7.59E+01 9.90E+01 8.85E+01 1.53E+02 1.57E+02
f23 Mean 2.37E+03 2.35E+03 3.55E+03 3.45E+03 5.62E+03 5.18E+03

SD 5.05E+02 6.87E+02 6.81E+02 6.51E+02 4.38E+02 6.39E+02
f24 Mean 2.23E+02 2.34E+02 2.55E+02 2.60E+02 3.23E+02 3.18E+02

SD 1.17E+01 1.51E+01 7.70E+00 8.98E+00 3.25E+01 2.88E+01
f25 Mean 2.44E+02 2.49E+02 2.72E+02 2.76E+02 3.27E+02 3.33E+02

SD 1.50E+01 1.28E+01 7.14E+00 9.67E+00 1.75E+01 2.21E+01
f26 Mean 2.07E+02 2.40E+02 2.10E+02 2.90E+02 2.83E+02 3.21E+02

SD 2.88E+01 5.91E+01 3.66E+01 7.24E+01 6.93E+01 7.11E+01
f27 Mean 5.14E+02 6.04E+02 8.02E+02 8.31E+02 1.14E+03 1.14E+03

SD 9.71E+01 8.56E+01 8.23E+01 6.58E+01 1.14E+02 1.16E+02
f28 Mean 4.78E+02 5.90E+02 1.37E+03 2.07E+03 4.43E+03 4.35E+03

SD 4.12E+02 5.06E+02 6.48E+02 5.77E+02 7.00E+02 7.77E+02
Bolds: Best result
U: Unimodal problems

2000, and the number of dimensions (D) is 20. The bench-
mark functions are used cited from CEC’13 benchmark
functions [5], and are 22 non-separable problems. The opti-
mum fitness value of each benchmark function is corrected
to 0. The simulation results were evaluated by average
value “Mean” and standard deviation “SD” with different
initial conditions for 100 trials. In N-PSO and N-DPSO,
we selected w = 0.729 and c1 = c2 = 1.4955. In N-PPSO,
we selected δc = 0.6, δd = 1.2, θ = 55◦, and α = 0.95.
Degree = 2 (ring topology) and Degree = 19 (gbest topol-
ogy) are selected. When Degree = 19, N-PPSO, N-PSO
and N-DPSO are the standard PPSO, PSO and DPSO, re-
spectively.

Table 1 shows the comparison results. As shown in Ta-
ble 1, N-PPSO (ring topology) has the best search per-
formance for 14 out of 22 non-separable problems, and
further, N-PSO (ring topology) has better search perfor-
mance for 13 out of 19 non-separable multimodal prob-
lems than PSO (gbest topology). N-DPSO is worse search
performance than N-PPSO and N-PSO, because particles
of N-DPSO may converge to a local optimum solution.
When ring topology, N-PPSO is effective in solving non-
separable multimodal problems. Therefore, PPSO with
neighborhood topology has good search performances in
solving non-separable multimodal problems.

6. Conclusion

Here, we proposed PPSO with locally-coupled topol-
ogy (N-PPSO), and clarified effectiveness of N-PPSO com-
pared with N-PSO and N-DPSO. PSO with the neighbor-
hood topology (N-PSO) is effective in solving multimodal
problems when Degree is small. As such, we introduced
the neighborhood topology to PPSO. The search direc-
tion of PPSO particles tends to be biased in parallel to
the coordinate axes, which can be controlled by parame-
ters. Furthermore, this characteristic is the same regard-
less of the neighborhood topology between particles. In
order to clarify the effectiveness of N-PPSO, N-PPSO was
compared with N-PSO and N-DPSO through numerical
experiments. As the results, search performances of N-
PPSO are good in solving non-separable multimodal prob-
lems when neighborhood topology is ring topology (i.e.,
Degree = 2). Therefore, we concluded that N-PPSO par-
ticles do not converge to a local optimum solution prema-
turely when the neighborhood topology is ring topology.
In our future works, we will analyze relationship between
the neighborhood topology and search performances of N-
PPSO in more detail. Furthermore, we will apply N-PPSO
to real-world applications.
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