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Abstract—This paper aims at challenging Bernstein’s
problem called the “Degrees-of-Freedom problem”, which
is known to remain unsolved from both the physiological
and robotics viewpoints. More than a half century ago
A.N. Bernstein observed and claimed that “dexterity” res-
ident in human limb motion emerges from accumulated
involvement of multi-joint movements in surplus DOF. It
is also said in robotics that redundancy of DOFs in robot
mechanisms may contribute to enhancement of dexterity
and versatility. However, kinematic redundancy incurs a
problem of ill-posedness of inverse kinematics from task-
description space to joint space. In the history of robotics
research such ill-posedness problem of inverse-kinematics
has not yet been attacked directly but circumvented by
introducing an artificial performance index and determin-
ing uniquely an inverse kinematics solution by minimiz-
ing it. Instead of it, this paper introduces two novel con-
cepts named “stability on a manifold” and “transferabil-
ity to a submanifold” in treating the case of human multi-
joint movements of reaching and shows that a sensory feed-
back from task space to joint space together with a set of
adequate dampings (joint velocity feedbacks) enables any
solution to the overall closed-loop dynamics to converge
naturally and coordinately to a lower-dimensional mani-
fold describing a set of joint states fulfilling a given mo-
tion task. This means that, without considering any type of
inverse kinematics, the reaching task can be accomplished
by a sensory feedback with adequate choices of a stiffness
parameter and damping coefficients. It is also shown that
these novel concepts can cope with annoying character-
istics called “variability” of redundant joint motions seen
typically in human skilled reaching. Finally, it is pointed
out that the proposed control signals can be generated in
a feedforward manner in case of human limb movements
by referring to mechano-chemical characteristics of activa-
tion of muscles. Based on this observation, generation of
a human skilled movement can be interpreted in terms of
the proposed “Virtual-Spring”hypothes instead of the tra-
ditional “Equilibrium-point” hypothesis.

1. Introduction

This paper is concerned with a challenge to one of un-
solved problems posed by A.N. Bernstein [1] [2] as the
Degrees-of-Freedom problem, particularly, in case of hu-
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Figure 1: “Reaching” by means of a surplus DOF system
of hand-arm dynamics.

man or robotic multi-joint movements of reaching as shown
in Fig.1. The problem is how to generate a joint motion so
as to transfer the endpoint of an upper limb with four joints
(shoulder, elbow, wrist, and finger MP joint) to a given tar-
get point xd = (xd, yd) in the two-dimensional horizontal
plane. Since the objective task xd is given in the task space
x ∈ X(= R2) and the joint coordinates q = (q1, q2, q3, q4)T

are of four-dimension, there exists an infinite number of
inverses qd that realize x(qd) = xd and hence the prob-
lem of obtaining inverse kinematics from the task descrip-
tion space X to the 4-dimensional joint space becomes ill-
posed. Under this circumstances, however, it is necessary
to generate joint motions q(t) starting from a given initial
point x(0) = (x(0), y(0)) in X with some initial posture
q(0) = (q1(0), · · · , q4(0))T and leading the endpoint trajec-
tory x(t) to reach the target xd as t → ∞. In order to get rid
of such ill-posedness, many methods have been proposed
as surveyed in a special issue of the journal [3] and a book
specially dedicated to problems of redundancy [4]. Most
of them are based on an idea of introducing some extra
and artificial performance index for determining uniquely
an appropriate joint space trajectory by minimizing it. In
fact, examples of such performance index in robotics re-
search are the followings: kinetic energy [5], quadratic
norm of joint control torque [6], manipulability index [7],
virtual fatigue function [8], etc. [9] [10]. Most of pro-
posed methods have been explicitly or implicitly based on
the Jacobian pseudoinverse approach for planning an opti-
mized joint velocity trajectory q̇(t) together with an extra
term (I − J+(q)J(q))v, where v is determined by optimizing
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the performance index, J(q) stands for the Jacobian ma-
trix of task coordinates x in joint coordinates q, and J+(q)
the pseudoinverse of J(q). In the history of robot control
the idea of use of the pseudoinverse for generation of joint
trajectories for redundant robots was initiated by Whitney
[11] and analyzed more in details by Liegeois [12]. How-
ever, it is impossible to calculate J+(qd) in advance because
qd is undetermined. Therefore, it is recommended that a
control signal u to be exerted through joint actuators of the
robot is designed as

u = −Cq̇ + JT(q)K(x(q) − xd) + {I − J+(q)J(q)}v (1)

where C stands for a constant positive definite matrix for
damping shaping and K a constant definite positive def-
inite gain matrix. On the other hand, there is the vast
literature of research works concerned with even a sim-
ple multi-joint reaching motion or pointing movement in
physiology, which are, for example, Feldman [13], Flash
[14], Flash and Hogan [15], Georgopoulos [16], and Bizzi
et al [17]. Most of them published in physiological jour-
nals are more or less affected by the equilibrium point (EP)
hypothesis of motor control found by Feldman [18] and
observed by Bizzi et al. [19] as spring-like motion of a
group of muscles. This EP hypothesis can be interpreted in
the control-theoretic language such that for a specified arm
endpoint xd in cartesian space the central part of control for
reaching it must be composed of the term JT(q)K(x − xd)
which corresponds to assuming introduction of an artifi-
cial potential ∆xTK∆x/2 in the external world (task space),
where ∆x = x − xd. This idea is also known in robotics
as the PD feedback with damping shaping first proposed
by Takegaki and Arimoto[20]. In the case of redundant
multi-joint reaching, however, there arises the same prob-
lem of ill-posedness of inverse kinematics. Thus, in par-
allel with the vast literature [3–12] in robotics research,
many methods for elimination of redundancy of DOFs have
been proposed in the physiological literature initiated by
Hogan [21]. Most of them are samely based on introduc-
tion of extra performance criterion to be optimized, which
are in the following: squared norm of joint jerks (rate of
change of acceleration) [21][15], energy [22], effort ap-
plied during movement [23], minimum-torque [24], and
minimum torque-change [25] and some other cost func-
tions [26] though some of them are not used for redun-
dancy resolution. Nevertheless, even all performance in-
dices that lead successfully to unique determination of the
inverse kinematics are not well-grounded physiologically
and none of physiological evidence or principle that asso-
ciates such a performance index to generation of human
movements could be found.

In this paper, we resolve this ill-posedness of inverse
kinematics without considering any kind of inverse prob-
lems and without introducing any type of artificial perfor-
mance index for the multi-joint reaching problem posed
above. Instead, we use a surprisingly simpler sensory feed-
back scheme described as

u = −Cq̇ − JT(q)k∆x (2)

where ∆x = x − xd, k a single stiffness parameter. This
means that the control signal is composed of only two
terms, one is a damping term (angular velocity feedback)
and the other is a sensory feedback from task space with
the stiffness parameter k modified by the transpose of Ja-
cobian J(q). This is nothing else but a task-space PD feed-
back scheme with damping shaping in the case of control of
non-redundant robot manipulators [27]. It is proved theo-
retically that adequate choices of gain matrices C and stiff-
ness parameter k render the closed-loop system dynamics
convergent as time elapses, that is, x(t)→ xd and q̇(t)→ 0
as t → ∞. However, owing to the joint redundancy, the
convergence in task space does not directly imply the con-
vergence of joint variables q(t) to some posture. In the pa-
per, by introducing a novel concept named “stability on a
manifold” it is shown that q(t) remains in a specified region
in joint space such that the Jacobian matrix is nondegener-
ated and there does not arise any unexpected self-motion
inherent to redundant systems. In other words, the con-
trol scheme of eq.(2) suggests that the problem of elimi-
nation of joint redundancy need not be solved but can be
ignored in control of the dynamics. Or it can be said that
a natural physical principle for economies of skilled mo-
tions like the principle of least action in Newtonian me-
chanics may work in elimination of redundancy. Another
concept named “transferability to a submanifold” is also
introduced for discussing the asymptotic convergence in a
case of middle-range reaching. These two concepts were
originally and very recently defined in cases of control of
multi-fingered hands with joint redundancy and control of
a hand-writing robot with surplus DOFs [28][29].

All the simulation results conducted on the basis of the
closed-loop dynamics obtained by substituting the control
signal of eq.(2) into the Lagrange equation of motion seem
to support the EP-hypothesis. However, the hypothesis has
recently been re-considered in a more soplisticated man-
ner by Won & Hogan [30] in order to take into account the
phenomenon of relatively low stiffness of spring-like forces
during limb movements observed by Bennet et al. [31] and
Gomi et al. [32]. The final section dedicates itself to the
argument that, instead of the EP-hypothesis, the Virtual-
Spring hypothesis is well capable to interpret how a skilled
motion with redundant DOFs can be generated irrespective
of low or high stiffness of individual muscle contraction
forces. Further, based on the Virtual-spring hypothesis to-
gether with referring to chemical characteristics of activa-
tivation of muscles, generation of task-space sensory feed-
back signals can be interpreted as a time-varying poten-
tial signal that can exert at joints in a feedforward manner.
Finally, it is shown from computer simulation results that
a robotic reaching motion with redundant DOFs exhibit-
ing all typical characteristics of human skilled multi-joint
reaching as Latash pointed out [33] can be realized by such
a simple control signal.
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Figure 2: Initial posture of the arm-hand system with four
joints. The point (xd, yd) denotes the target for the robot
endpoint.

2. Closed-loop Dynamics of Multi-joint Reaching
Movement

Lagrange’s equation of motion of a multi-joint system
whose motion is confined to a plane as shown in Fig.1 is
described by the formula (see [34])

H(q)q̈ +
{

1
2

Ḣ(q) + S (q, q̇)
}

q̇ = u (3)

where q = (q1, q2, q3, q4)T denotes the vector of joint an-
gles, H(q) the inertia matrix, and S (q, q̇)q̇ the gyroscopic
force term including centrifugal and Coriolis force. It is
well known that the iniertia matrix H(q) is symmetric and
positive definite and there exist a positive constant hm to-
gether with a positive definite constant diagonal matrix H0
such that

hmH0 ≤ H(q) ≤ H0 (4)

for any q. It should be also noted that S (q, q̇) is skew sym-
metric and linear and homogeneous in q̇. Any entry of H(q)
and S (q, q̇) is constant or a sinusoidal function of compo-
nents of q.

For a given specified target position xd = (xd, yd) as
shown in Fig.1, if the control input of eq.(2) is used at joint
actuators then the closed-loop equation of motion of the
system can be expressed as

H(q)q̈ +
{

1
2

Ḣ(q) + S (q, q̇) +C
}

q̇ + JT(q)k∆x = 0 (5)

which follows from substitution of eq.(2) into eq.(3). Since
ẋ = J(q)q̇, the inner product of eq.(5) with q̇ is reduced to

d
dt

E = −q̇TCq̇ (6)

where E stands for the total energy, i.e.,

E(q, q̇) =
1
2

q̇TH(q)q̇ +
k
2
∆xT∆x (7)
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Figure 3: S) Starting posture, F) Final posture, U) Unrea-
sonable posture

Evidently the first term of this quantity E stands for the
kinetic energy of the system. The second term is called
an artificial potential in this paper that appears due to ad-
dition of equilibrium point control JT(q)k∆x based on the
error ∆x expressed in cartesian space. As it is well known
in robot control (see [34]), the relation of eq.(6) denotes
passivity of the closed-loop dynamics of eq.(5). It also re-
minds us of Lyapunov’s stability analysis, since it shows
that the derivative of a scalar function E in time t is neg-
ative semi-definite. However, it should be noted that the
scalar function E(q, q̇) is not positive definite with respect
to the state vector (q, q̇) ∈ R8. In fact, E includes only a
quadrative term of two-dimensional vector ∆x except the
kinetic energy as a positive definite quadratic function of
q̇. Therefore, it is natural and reasonable to introduce a
manifold of 2-dimension defined as

M2 = {(q, q̇) : E(q, q̇) = 0 (q̇ = 0, x(q) = xd)}
which is called the zero space in the literature of robotics
research (for example, [6]). Next, consider a posture (q0, 0)
with still state (i.e., q̇ = 0) whose endpoint is located at xd,
i.e., x(q0) = xd and hence (q0, 0) ∈ M2, and analyze sta-
bility of motion of the closed-loop dynamics in a neighbor-
hood of this equilibrium state. This equilibrium state in R8

is called in this paper the reference equilibrium state.
It is now necessary to introduce the concept of neighbor-

hoods of the reference equilibrium state (q0, 0) ∈ M2 in
R8, which are conveniently defined with positive parame-
ters δ > 0 and r0 > 0 as

N8(δ, r0) =
{
(q, q̇) : E(q, q̇) ≤ δ2 and ‖q − q0‖K ≤ r0

}

where ‖q− q0‖K =
{

1
2 (q − q0)TH(q)(q − q0)

}1/2
(see Fig.4).

The necessity of imposing the inequality condition ‖q −
q0‖K ≤ r0 comes from avoiding arise of possible move-
ments such as self-motion [32] due to redundancy of DOFs
far from the original posture. In fact, for the given end-
point xd with the reference state as shown by the mark F)
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Figure 4: Definitions of “stability on a manifold” and
“transferability to a submanifold”.

in Fig.3, one possible state with the posture marked by S) in
Fig.3 may be inside N8(δ, r0) but another state marked by
U) must be excluded from the neighborhood N8(δ, r0) by
choosing r0 > 0 appropriately, because the overall posture
of U) is by far deviated from that of the original reference
equilibrium state (q0, 0). Further, it is necessary to assume
that the reference equilibrium state (q0, 0) is considerably
distant from the posture that has singularity of Jacobian
matrix J(q), which happens if and only if q2 = q3 = q4 = 0.

We are now in a position to define the concept of stability
of the reference equilibrium state lying on the manifold M2.

Definition 1 If for an arbitrarily given ε > 0 there exist a
constant δ > 0 depending on ε and another constant r1 > 0
independent of ε and less than r0 such that a solution trajec-
tory (q(t), q̇(t)) of the closed-loop dynamics of eq.(5) start-
ing from any initial state (q(0), q̇(0)) inside N8(δ(ε), r1)
remains in N8(ε, r0), then the reference equilibrium state
(q0, 0) is called stable on a manifold (see Fig.4).

Definition 2 If for a reference equilibrium state
(q0, 0) ∈ R8 there exist constants ε1 > 0 and r1 > 0
(r1 < r0) such that any solution of the closed-loop dy-
namics of eq.(5) starting from an arbitrary initial state in
N8(ε1, r1) remains in N8(ε1, r0) and converges asymptoti-
cally as t → ∞ to some point on M2 ∩ N8(ε1, r0), then the
neighborhood N8(ε1, r1) of the reference equilibrium state
(q0, 0) is said to be transferable to a submanifold of M2.

This definition means that, even if a still state (q0, 0) ∈
M2 of the multi-joint system is forced to move instantly to
a different state (q(0), q̇(0)) in a neighborhood of (q0, 0)
by being exerted from some external disturbance, the sen-
sory feedback control of eq.(2) assures that the system’s
state soon recovers to another still state (q∞, 0) ∈ M2 ∩
N8(ε1, r0) whose endpoint attains at the original point
x(q∞) = xd though the convergent posture q∞ possi-
bly differs from the original one q0 but remains within
‖q∞ − q0‖K ≤ r0.

Table 1: Lengths of upper arm (l1), lower arm (l2), palm
(l3), and index finger (l4) together with corresponding
masses (mi, i = 1, · · · , 4) and inertia moments (Ii, i =
1, · · · , 4). The data are taken from an average male adult.

link1 length l1 0.2800 [m]
link2 length l2 0.2800 [m]
link3 length l3 0.09500 [m]
link4 length l4 0.09000 [m]

link1 cylinder radius r1 0.04000 [m]
link2 cylinder radius r2 0.03500 [m]
link3 cuboid height h3 0.08500 [m]
link3 cuboid depth d3 0.03000 [m]

arm link4 cylinder radius r4 0.009500 [m]
link1 mass m1 1.407 [kg]
link2 mass m2 1.078 [kg]
link3 mass m3 0.2423 [kg]
link4 mass m4 0.02552 [kg]

link1 inertia moment I1 9.758 × 10−3 [kgm2]
link2 inertia moment I2 7.370 × 10−3 [kgm2]
link3 inertia moment I3 2.004 × 10−4 [kgm2]
link4 inertia moment I4 1.780 × 10−5 [kgm2]

Table 2: Initial conditions.

q1(0) 83.00 [deg]
q2(0) 45.00 [deg]
q3(0) 40.00 [deg]
q4(0) 74.00 [deg]
x(0) -0.2734 [m]
y(0) 0.4788 [m]
‖∆x‖2 0.1173 [m]

Table 3: Numerical values of inertia matrix H(q(t)) at t = 0
with the posture expressed in Fig.3 (a).

H(q(0)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.886 × 10−1 1.011 × 10−1 4.004 × 10−3 −3.314 × 10−4

1.011 × 10−1 5.630 × 10−2 3.964 × 10−3 −3.123 × 10−5

4.004 × 10−3 3.964 × 10−3 1.107 × 10−3 9.954 × 10−5

−3.314 × 10−4 −3.123 × 10−5 9.954 × 10−5 6.947 × 10−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. Short-range Reaching

According to the energy balance law expressed by eq.(6),
the total energy E(t)(= E(q(t)), q̇(t)) is decreasing with in-
creasing t as far as q̇ � 0 for an arbitrary positive definite
damping gain matrix C. However, the motion profile x(t)
of the endpoint is quite sensitive to choice for ci > 0 for
i = 1, · · · , 4 where C = diag(c1, · · · , c4) though for a broad
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Figure 6: Endpoint trajectories of reaching movements
when damping factors of eq.(9) is used.

range of choice for ci (i = 1, · · · , 4) the endpoint x(t) even-
tually converges to the target if the stiffness k is chosen
adequately. For example, we show several endpoint trajec-
tories for different k in Fig.5 obtained by computer simula-
tion based on a human model shown in Table 1 in the case
that the initial point x(0) in task space X(= R2) and its cor-
responding initial posture q(0) are set as in Table 2, where
damping gains are chosen as

c1 = c2 = c3 = c4 = 0.003 [Ns] (8)

The endpoint trajectory x(t) starting from the initial posture
shown as S) in Fig.3 is going to approach the target but
overruns and oscillates around the target xd, but in a long
run it converges to the target and stops with the final posture
shown as U) in Fig.3 when k = 8.0 is chosen.

According to Latash [33], human skilled multi-joint
reaching is characterized as follows:

a) The profile of the endpoint trajectory in task space X
becomes a quasi-straight line,

b) the velocity profile of it in X becomes symmetric and
bell-shaped,

c) the acceleration profile has double peaks,
d) but each profile of time histories of joint angles qi(t)

and angular velocities q̇i(t) may differ for i = 1, 2, · · · , 4.
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Figure 7: Transient responses of x and y when damping
factors of eq.(9) are chosen.
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Figure 9: Transient responses of velocities ẋ and ẏ when
damping factors of eq.(9) are chosen.

We are now in a position to answer to the question
whether it is possible to find a set of adequate damping fac-
tors ci (i = 1, · · · , 4) together with an adequate stiffness pa-
rameter k > 0 so that the simpler sensory feedback of eq.(2)
leads to the skilled motion of reaching realizing an approxi-
mately rectilinear endpoint trajectory without incurring any
noteworthy self-motion. We select damping factors as fal-
lows:

c1 = 1.89, c2 = 1.21, c3 = 0.29, c4 = 0.070 (9)
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Figure 10: Transient eigenvalues of 2 × 2 matrix
J(q)C−1JT(q) (left) and 4×4 matrix 9.0C−1H(q)C−1 (right).

Then, numerical solutions of the closed-loop dynamics of
eq.(5) for different stiffness parameters give rise to transient
responses of the endpoint trajectory (x(t), y(t)) in Fig.6,
x(t) and y(t) in Fig.7, q2(t) and q4(t) in Fig.8 and ẋ(t) and
ẏ(t) in Fig.9. As shown in Figs.6 and 7, the endpoint tra-
jectories become well approximately rectilinear and do not
change much for different stiffness parameters, though the
speed of convergence to the target deffers considerably and
dependently on k. The best choice of k in this chosen set
of damping factors given in eq.(9) must be around k = 8.0
[N/m].

Now let us discuss how to select such a good set of
damping factors as in eq.(9). If one of the tightest (small-
est) diagonal matrix H0 satisfying eq.(4) is found, then it is
possible to select C in such a way that

C ≥ 3.0H1/2
0 (10)

Further, it should be noted that such a matrix H0 can be
selected as the smallest constant diagonal matrix satisfying

H(q) ≤ H0 for all q such that ‖x(q) − xd‖ ≤ r (11)

where r denotes the eucleadian distance between the start-
ing endpoint x(0) (= (x(0), y(0)) and the target xd, because
according to eq.(6) the endpoint should remain inside the
circle ‖x(t) − xd‖ ≤ r for any t > 0. In the case of short-
range reaching with r = 0.1173 [m] for a typical male adult
with 1.65 [m] in height, the initial value of H(q) with the
posture shown in Fig.2 is evaluated as in Table 3. We evalu-
ate a tighter bound H0 starting from the data of H(0) in Ta-
ble 3 by adding each possible contribution of off-diagonal
element |Hi j(0)| to Hii(0) and H j j(0). By the same com-
puter simulation based on Table 1 and 2, we find that such
a choice of C = 3.0H1/2

0 as numerically given in eq.(9)
gives rise to

9.0C−1H(q)C−1 < I4 (12)

during the transient process of reaching as shown in Fig.10.

4. Stability on a Manifold and Transferability

Now it is possible to show that a reference still state
(q0, 0) shown by the posture F) in Fig.3 is stable on a man-
ifold and there does not arise any unreasonable self-motion
(see [35]) in the vicinity of (q0, 0) if q(0) is close to q0 and
damping factors are chosen as in eq.(9). Then, it is possi-
ble to show that taking inner product between eq.(5) and
{q̇ +C−1kJT∆x} yields

d
dt

W(k;∆x, q̇) + kh(∆x, q̇)

= −q̇TCq̇ − k2∆xTJC−1JT∆x (13)

where

h(∆x, q̇) = ∆xTJC−1
(
−1

2
Ḣ − S

)
q̇

−∆xT J̇C−1Hq̇ − q̇TJTJC−1Hq̇ (14)

and

W(k;∆x, q̇) =
1
2

(q̇ + kC−1JT∆x)TH(q̇ + kC−1JT∆x)

+
k
2
∆x{2I2 − kJC−1HC−1JT}∆x (15)

Equation (13) can be rewritten into

d
dt

W(k;∆x, q̇)

= −q̇TCq̇ − k2∆xTJC−1JT∆x − kh(∆x, q̇)
≤ −γW(k;∆x, q̇) − kh(∆x, q̇) − f (k;∆x, q̇) (16)

where

f (k;∆x, q̇) = q̇T
(
C − γ

2
H − γk

4
H

)
q̇

+k∆xT(kJC−1JT − γI2 − γJC−1HC−1JT)∆x (17)

and the following inequality is used:

∆xTJC−1Hq̇ ≤ ∆xTJC−1HC−1JT∆x +
1
4

q̇THq̇ (18)

Now, assume that a reference still state (q0, 0) with
x(q0) = xd is given as shown in FIg.3 with the posture F)
and choose positive numbers δ1 > 0 and r0 > 0 appropri-
ately so that any q in N8(δ1, r0) satisfies eq.(11), eq.(12),
and another inequality J(q)C−1 JT(q) > 0.215I2. Then, it is
possible to prove the following theorems:

Theorem 1 The reference state (q0, 0) is stable on a
manifold for the closed-loop dynamics of eq.(5) with k =
10.0 and damping factors given in eq.(9).

Theorem 2 The neighborhood N8(δ1, r1) with some δ1

and r1 such that 0 < δ1 < r0 and 0 < r1 < r0 is transferable
to a submanifold of M2.

The proofs of these theorems are omitted in this paper,
because they are straightforward from Theorem 3 to be
stated in the next section.
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5. Pointwise Transferability and Middle-range Reach-
ing

It should be noted that both Theorem 1 and 2 can assure
asymptotic convergence of endpoint trajectories |vecx(t) to
xd starting from a broad domain of initial postures q(0), in
particular, even if the finger joint angle q4(0) differs fairly
from q0

4(0), because the fourth diagonal entry H44(q) of
H(q) is quite small relative to other diagonal entries Hii(q)
(i = 1, 2, 3) owing to the smaller link inertia moment of in-
dex finger. Therefore, both the theorems do not assure non-
occurence of possible self-motion of a part of the whole
arm, that is, partial joint angles (q3(t), q4(t)) of finger joint
and wrist. In order to analyze more rigorously the prob-
lem whether self-motion may arise or not, it is important to
fefine the following:

Point-wise transferability For a target point xd =

(xd, yd) for the closed-loop dynamics of eq.(5), an initial
still state (q(0), q̇(0) = 0) is said to be pointwise transfer-
able to a submanifold of M2 if and only if the endpoint x(t)
(= x(q(t)) of the solution (q(t), q̇(t)) to eq.(5) starting from
(q(0), 0) converges xd as t → ∞ under the condition that

4∑
i=1

li |qi(t) − qi(0)| ≤ 2απ‖x(0) − xd‖ (19)

for any t ≥ 0 with a constant α of O(1).
Since li denotes the length of link i, the left hand side of

eq.(19) is equivalent to the total of movements of each link
endpoint relative to each corresponding joint. We interprete
that if eq.(19) is valid for at most α = O(1) then there does
not arise self-motion caused by joint redundancy.

Now we show that, given a target endpoint xd as in
Fig.3 and an initial posture as S) of Fig.3, this initial
state (q(0), 0) of the closed-loop dynamics (5) with damp-
ing factors of eq.(9) becomes pointwise transferable with
α = 1.0. As discussed in section 3, it is reasonably as-
sumed that inequality (12) is valid for any q during this
reaching movement. Furthermore, it is easy to see that the
lowest eigenvalue of J(q)C−1JT(q) is always bounded from
below by λm = 0.18 as shown in Fig.10 (a), which leads to

J(q)C−1 JT(q) ≥ 0.18I2 (20)

At the same time, it is easy to check that

J(q)JT(q) ≤ (1/2)I2 and C ≥ (9/2)H(q) (21)

Then, it is possible to show by putting k = 8.0 and γ =
4/3 the function f defined by eq.(17) can be evaluated as
follows:

f (k = 8.0;∆x, q) ≥ (1/4)q̇TCq̇ (22)

On the other hand, the function h can be evaluated in a
similar manner to the appendices presented in our previous
paper [36] such that

kh(∆x, q̇) = 8.0h(∆x, q̇) ≥ −(1/4)q̇TCq̇ (23)

Thus, from eqs.(22) and (23) it follows that

d
dt

W(∆x, q̇) ≤ −(4/3)W(∆x, q̇) (24)

where W(k;∆x, q̇) at k = 8.0 is denoted by W(∆x, q̇). Since
W(∆x, q̇) ≥ (3/4)k‖∆x‖2 for k = 8.0 as shown in Appendix
A, it is concluded from eq.(24) that

‖∆x(t)‖2 ≤ (4/3)‖∆x(0)‖2e−(4/3)t (25)

because W(∆x(0), q̇(0) = 0) = k‖∆x(0)‖2. Since q̇(0) = 0
in this case, multiplying C−1/2 from the left to eq.(5) and
integrating this resultant equation over (0, t) yield

C1/2(q(t) − q(0)) = −C−1/2H(q)q̇(t)

+

∫ t

0
C−1/2

(
1
2

Ḣ − S
)

q̇dτ − k
∫ t

0
C−1/2JT∆xdτ (26)

Note that the Jacobian matrix can be described as

J(q) = (J1, J2, J3, J4) (27)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
J1 =

( −y
x

)
, J2 =

( −y + l1s1

x − l1c1

)

J3 =

( −l1s1234 − l2 s123

l1c1234 + l2c123

)
, J4 =

( −l1s1234

l1c1234

) (28)

where s123 denotes sin(q1+q2+q3), c123 = cos(q1+q2+q3),
etc. Hence it follows from eq.(26) that

√
ci|qi(t) − qi(0)| ≤ 1√

ci

∣∣∣∣∣∣∣∣
4∑

j=1

Hi jq̇i

∣∣∣∣∣∣∣∣
+β̄

∫ ∞

0
q̇TCq̇dτ +

k√
ci

∫ t

0
‖Ji‖‖∆x‖dτ (29)

where β̄ can be evaluated as at most β̄ = 0.2. Comparing
numerical values of ci defined by eq.(9) and the length li
given in Table 1, we find that

√
ci is close to O(4li). Further,

since xd = (−0.35, 0.35), ‖∆x(0)‖ = 0.1173 [m], and x(t)
remains inside the circle ‖∆x‖ = 0.1173, it is possible to
see that ‖J1‖ ≤ ‖xd‖ + ‖∆x(0)‖ = 0.6123, and similarly
‖J2‖ ≤ 0.465, ‖J3‖ ≤ 0.185, and ‖J4‖ ≤ 0.09. On the other
hand, it is possible to obtain

1√
ci

∣∣∣∣∣∣∣∣
4∑

j=1

Hi jq̇i

∣∣∣∣∣∣∣∣ + β̄
∫ ∞

0
q̇Cq̇dτ ≤ √cih0

√
E(t) + βE(0) (30)

where h0 is at most 0.1. Thus, by using (k/2)‖∆x(0)‖2 =
E(0), it is possible to obtain

di = li‖qi(t) − qi(0)‖ ≤ 2
(
lih0 +

li√
ci
β̄
√

E(0)
)
‖∆x(0)‖

+
16

ci
√

3
li
{
intt

0‖Ji‖e−(2/3)τdτ
}
‖∆x(0)‖ (31)

The second term of the right hand side is dominant relative
to the first. In fact, the first term of the right hand side
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Figure 11: (a) Starting position, where l0 = ‖x − xd‖ =
0.3823 [m]. (b) Transient responses of the endpoint in case
of middle-range reaching with the same set of damping fac-
tors as given in eq.(9).

Table 4: Initial conditions.

q1(0) 50.00 [deg]
q2(0) 50.00 [deg]
q3(0) 30.00 [deg]
q4(0) 85.00 [deg]
x(0) -0.003429 [m]
y(0) 0.5114 [m]
‖∆x‖2 0.3823 [m]

is bounded from above by a quantity ε0‖∆x(0)‖ with ε0 =

0.08. Thus, we obtain
{

d1 ≤ (ε0 + 1.257)‖∆x(0)‖, d2 ≤ (ε0 + 1.491)‖∆x(0)‖
d3 ≤ (ε0 + 0.840)‖∆x(0)‖, d4 ≤ (ε0 + 1.604)‖∆x(0)‖

which verifies inequality (19) with α = (4ε0 + 5.192)/2π <
1.0. This proves the following:

Theorem 3 For a given taraget point xd = (xd, yd) as
specified in Fig.2 or Fig.3 with xd = −0.35 and yd = 0.35
[m], the initial still state (q(0), 0) with posture S) of Fig.3
is pointwise transferable to a submanifold of M2 without
self-motion.

Not only in the case of short-range reaching discussed
above but also in the case of middle-range reaching such as
‖∆x(0)‖ = 0.3823 [m] (see Fig.11 (a)) and the initial pos-
ture and endpoint are given in details as in Table 4, the end-
point trajectories of solutions to the closed-loop dynamics
of eq.(5) with the same damping factors of eq.(9) for vari-
ous values of stiffness parameter k converge to xd as shown
in Fig.11 (b). In this case the transient responses of x(t)
and y(t) become as shown in Fig.12. It is interesting to see
that the speed of convergence to the target shown in Fig.12
is not so retarded in comparison with that of the previous
short-range reaching case shown in Fig.7, regardless that
the initial distance to the target ‖∆x(0)‖ = 0.3823 [m] in the
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Figure 12: Transient responses of x(t) and y(t) correspond-
ing to the case of Fig.11.

middle-range reaching is more than three times of the ini-
tial distance ‖∆x(0)‖ = 0.1173 [m] in the short-range case.
However, it seems not so easy to prove the pointwise trans-
ferability without self-motion in this middle-range reach-
ing, because the minimum eigenvalue of J(q)C−1 JT(q) may
happen to become smaller below λm = 0.18. Notwithstand-
ing this, it is possible to conclude the statement of Theorem
3 for the middle-range reaching by using the argument de-
veloped in section 7.

6. Virtual-spring Hypothesis and Typical Characteris-
tics of Skilled Reaching Movements

The analysis of closed-loop dynamics of eq.(6) devel-
oped in previous sections suggests that, to realize a skilled
reaching motion by using redundant joints, generation of an
artificial potential (k/2)‖∆x‖2 together with an adequate set
of damping factors is not only indispensable but also suffi-
cient for generating a quasi-straight line movement of the
endpoint. In the case of control of a robotic arm, the term
−kJT(q)∆x is called a task-space feedback based on mea-
surements of the endpoint position x(t) by external sensing
like visual sensing. In the case of human reaching, how-
ever, exerted torques −kJT(q)∆x must be generated from
a group of muscles which are endowed with a total poten-
tial energy generated by excitation of neuro-motor signals
from the CNS. This fact can be well interpreted by hypoth-
esizing a virtual spring as shown in Fig.13, drawing the
end of the whole arm to the target with the force equiva-
lent to the vector k(xd − x(t)), which is equivalent to −k∆x.
In this hypothesized model, the ith joint is exerted by the
torque −kJT

i ∆x and also subject to the damping force −ciq̇i.
It should be remarked that the magnitude and signature of
each spring-like moment of force at each joint are not di-
rectly related to the magnitude of ∆x but to the quantity of
k times an inner product of two-dimensional vectors Ji(q)
and ∆x, where Ji(q) (i = 1, · · · , 4) are defined in eq.(28).
Note that the magnitude of −kJT

i ∆x is equivalent to that of
moment of force −−−→PiP0 × k∆x, where symbol “×” denotes

8
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Figure 14: Transient responses of joint angles q2 and q4

when damping factors of eq.(32) are chosen.

the external product and −−−→PiP0 denotes the position vector
from the ith joint to the endpoint (see Fig.13). Therefore,
in the case of short-range reaching starting from the posture
S) in Fig.3 (b) the torque −kJT

1∆x exerting to the shoulder
joint is plus at t = 0 and therefore q1(t) is increasing with
t as well as q2(t) seen in Fig.8 (a), but the torque −kJT

4∆x
exerting to the finger joint is minus at t = 0 and therefore
q4(t) is decreasing with t as seen in Fig.8 (b). On the ba-
sis of this virtual-spring hypothesis, it can be claimed that
a skilled reaching movement must emerge from synergis-
tic generations of potential energies in a group of muscles
involved in these four joints, whose total is equivalent to
(1/2)k‖∆x(0)‖2, and synergistic formation of damping fac-
tors generating viscouse-like forces in each subgroup of
muscles corresponding to each joint. Variability of joint
motions is mainly due to permissible fluctuations of damp-
ing effects, which are rather insensitive to the endpoint tra-
jectory. Thus, the fourth characteristics of human skilled
reaching raised as d) in section 3 become apparent from the
viewpoint of virtual-spring hypothesis. Each joint move-
ment is fairly dependent on the posture and in details sub-
ject to exertion of each corresponding torque −kJT

i (q)∆x.
Next, we discuss the variability as the most reproduca-

ble characterisitcs of human multi-joint reaching. Let us
choose another set of damping factors:

c1 = c2 = 1.89, c3 = c4 = 0.29 [Nms] (32)

Compared with the previous set of damping factors of
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Figure 15: Time-varying stiffness parameter.

eq.(9), this choice of dampings means that exertion of
damping forces on the finger MP joint and elbow is en-
hanced considerably relative to the wrist and shoulder re-
spectively. Note that both the wrist and shoulder are a
universal joint but the finger MP joint and elbow are not.
Computer simulation based on the closed-loop dynamics
of eq.(5) by using damping factors of eq.(32) gives rise
to almost the same quasi-straight line endpoint trajectory
x(t) as in Fig.6. Notwithstanding this, movements of joints
are noticeably variable according to changes of their corre-
sponding damping factors as shown in Fig.14 in compari-
son with Fig.8. In fact, note that the index finger MP joint
rotates from 74 [degree] to about 63.0 [degree] in Fig.8 but
it does from 74 [degree] to about 69.0 [degree] in Fig.14,
and the elbow rotates from 45 [degree] to about 52.7 [de-
gree] but it does to 50.7 [degree] in Fig.14 (a). That is, each
joint motion is quite sensitive to change of its correspond-
ing damping factor but the profile of endpoint trajectory is
not so variable in a wide range in the set of damping factors
ci (i = 1, · · · , 4).

Finally, another two typical characteristics of human
skilled reaching as described b) and c) in section 3 must
be discussed more in detail. In case of human multi-joint
movements, each joint is not directly actuated but rotated
indirectly by contraction of a group of muscles involved in
each corresponding joint. Muscle contraction can be inter-
preted from the mechanics viewpoint as a cause of genera-
tion of a potential energy produced from chemical reactions
stimulated by pulse-modulated neuro-motor signals con-
veyed from the CNS. As it is now well known [37] ∼ [39],
an elementary process of force generation during muscle
contraction is based on movements of a head of myosin
motor protein along an action filament triggered by pivot-
ing of the lever arm as a part of myosin light-chain domain
[40]. If this actomyosin (mechano-chemical interaction be-
tween nyosin molecules and actin-filaments) is treated as a
stochastic process of force generation and thereby a popu-
lation of these actomyosin activities are subject to a typi-
cal gamma distribution with a density function in time as
p(t) = λ2te−λt with a parameter λ > 0 (see Fig.15 (a)),
then generation of the total potential produced by contrac-
tions of the whole muscles must be time-varying with an
approximate stiffness parameter proportional to the integral

9
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Figure 16: Transient responses of ẏ(t) and v =√
ẋ2(t) + ẏ2(t) corresponding to the case of Fig.3(a) where

c1 = 2.67, c2 = 1.71, c3 = 0.410, c4 = 0.0990 [Ns].
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Figure 17: Transient responses of ẍ(t) and ÿ(t) correspond-
ing to the case of Fig.3(a) where c1 = 2.67, c2 = 1.71,
c3 = 0.410, c4 = 0.0990 [Ns].

of p(t), i.e.,

k(t) = k0

∫ t

0
p(τ)dτ (33)

Thus, it can be interpreted that a total of whole chemical re-
actions leads to time-varying generation of a total potential
energy in such a function form as

1
2

k(t)‖∆x(t)‖2

and k(t) is a monotonously increasing function in t as
shown in Fig.15.

Figures 16 and 17 show computer simulation results con-
cerning the closed-loop dynamics

H(q)q̈ +
(

1
2

Ḣ(q) + S (q, q̇)
)

q̇ +Cq̇ + k(t)JT(q)∆x = 0 (34)

which follows from substituting the control signal

u = −Cq̇ − k(t)JT(q)∆x (35)

into eq.(3), where k(t) is defined by eq.(33) with stiffness
constant k0. In this simulation, we set λ = 8.0 and double
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Figure 18: Transient responses of the endpoint and√
ẋ2(t) + ẏ2(t) corresponding to the case of c1 = 2.67,

c2 = 1.71, c3 = 0.141, c4 = 0.0354 [Ns] and the initial
posture of Table 5.

Table 5: Initial conditions.

q1(0) 59.00 [deg]
q2(0) 43.00 [deg]
q3(0) 25.00 [deg]
q4(0) 95.00 [deg]
x(0) -0.03806 [m]
y(0) 0.5295 [m]
‖∆x‖ 0.3599 [m]

each k in the previous simulation (Figs.6 to 10) in such a
way as k0 = 2k. Accordingly, each ci in Fig.9 is multiplied
by
√

2 so that the joint motion q(t) in eq.(6) can be accel-
erated by setting k = κk0 and ci =

√
κc0i (i = 1, · · · , 4)

with a positive parameter κ > 0. In fact, if q(t) is a so-
lution to eq.(9) for a stiffness parameter k = k0 and a set
of damping factors ci = c0i (i = 1, · · · , 4), then q(κt) must
be the solution to eq.(9) for k = κk0 and ci =

√
κc0i under

the same initial condition that q(0) = q0 and q̇(0) = 0. As
seen in Fig.16, velocity profiles of ẏ(t) and v (=

√
ẋ2 + ẏ2)

become bell-shaped, and in particular the profile of ẏ in
Fig.16 (a) becomes more symmetric campared with Fig.9
(b). It should be remarked again that the endpoint trajec-
tories (x(t), y(t)) become a quasi-straight line and behave
almost the same as Fig.6. It is interesting to note that tran-
sient responses of accelerations ẍ and ÿ have double peaks
as seen in Fig.17, which is coincident with the third char-
acteristics c) of human skilled reaching.

Finally we show in Fig.18 results of a simulation in the
case of middle-range reaching starting from the initial pos-
ture shown in Table 5. Compared with Fig.11 (b), the end-
point trajectory of Fig.18 (a) becomes more straight and the
velocity profile of Fig.18 (b) becomes more symmetirc. In
this case, note that the rate of damping coefficients c3 and
c4 per c1 and c2 respectively is reduced considerably. In
other words, softening both finger and wrist joints relative

10



to elbow and shoulder joints makes the endpoint movement
direct more straightforwardly to the target throughout the
whole motion.

7. Feedforward Control and Global Reaching Move-
ments

The virtual-spring hypothesis not only supports but also
enhance the EP-hypothesis in a sense that a potential en-
ergy source (a virtual-spring) is supposed to virtually exist
at the target equilibrium point and thereby a correspond-
ing force −k(t)∆x that supposedly draws the endpoint of
the whole arm evokes each moment of force −k(t)JT

i (q)∆x
at each corresponding joint i. In other words, synergy
for coordinating generations of joint torques must evolve
through thousands of practices so as to emanate neuro-
motor signals from the CNS to activate a group of mus-
cles to generate a total of potential (k(t)/2)‖∆x‖2 and in-
dividual joint damping forces. Based on the virtual-spring
hypothesis, it is needless to suppose individual spring-like
forces at each joint, but supposition of a single stiffness
parameter k(t) plays a crucial role. Therefore, as claimed
by Won and Hogan [30], estimating stiffness parameters at
each joint is a needless detail. Rather, it is more impor-
tant to suppose that the single stiffness parameter k(t) is
determined in a time-varying manner so that moments of
forces −k(t)JT

i (q)∆x at joint i (i = 1, · · · , 4) are produced in
a feedforward manner. In other words, the control scheme
of eq.(35) may work as an open-loop feedforward control
in the case of human multi-joint reaching movements. Al-
though this paper does not take into consideration muscle
dynamics, the damping force terms −ciq̇i (i = 1, · · · , 4) are
also generated in a feedforward manner due to passive vis-
cousity as one of mehcano-chemical properties of muscle
structures and, in parallel, rate of the torque-velocity rela-
tion that can be also regulated by neuro-motor signals from
the CNS [41]. It should be also pointed out that change
of mechanical impedance centering at such a viscous-like
term must be played by coactivitation of antagonist mus-
cles [42]. Enhancement of the feedback gain from spinal
reflex loop by co-contraction of an antagonist pair of mus-
cles is pointed out [43], which may result in increasing the
viscosity in joints.

It is interesting to note that there is no feedback loop
in control signals of eq.(35). This comes from limitation
of the present analysis to the case that movements of the
whole arm are confined to a horizontal plane. Motion of the
arm in a vertical plane needs regulation for withstanding
the gravity force, that may be subject to a feedback loop
from the spinal reflex, too.

A mathematical proof for verifying the pointwise trans-
ferability without incurring self-motion in the case of
middle-range reaching with time-varying stiffness k(t)
would be more sophisticated. In this paper, only a rough
sketch of the proof is given. First, analysis of the equation
of motion is split into two cases of time intervals I1 = [0, T)

and I2 = [T,∞), where T must be chosen approximately as
an instant when the endpoint enters into a circle with center
xd and radius r0 with O(10−1) [m], that is, in a circle with
short-range reaching, and at the same time k(t) becomes al-
most constant, that is, the time rate of k(t) (k̇(t)) becomes
sufficiently small. In the case of an initial posture shown
in Fig.11 (a), it is possible to see that JT

4 (q)∆x < 0 but all
others JT

i (q)∆x > 0 (i = 1, 2,3). This means that at the
beginning of joint movements the ith joint for i = 1, 2, 3 ro-
tates in the positive direction (counter-clockwise) and the
fourth joint rotates in the negative direction. If the damp-
ing factors ci (i = 1, · · · , 4) are carefully chosen as in eq.(9)
or in Fig.18 and all the joints keep to rotate in their same
directions as those at t = 0 until the time T > 0 specified
above, that is, the endpoint has already reached inside the
circle with center xd and radius r0 of O(10−1) [m] at T , then
the rigorous proof for short-range reaching can be applied
to the latter stage of joint movements for the time interval
[T,∞).

Finally, it is important to introduce the property:
Stable Transferability For a given target xd = (xd, yd)

for the closed-loop dynamics of eq.(6), an initial still state
(q(0), 0) is said to be stably transferable to a submani-
fold of M2 if 1) it is pointwise transferable without self-
motion to a submanifold of M2 and 2) for an arbitrary
given ε > 0 there exists a δ(ε) > 0 such that any solution
(q̄(t) ˙̄q(t)) starting from an arbitrary still state (q̄(0), 0) sat-
isfying ‖q̄(0) − q(0)‖ < δ(ε) is also pointwise transferable
without self-motion and its final posture q̄∞ (= lim

t→∞ q̄(t))
satisfies ‖q̄∞ − q∞‖ ≤ ε, where q∞ = lim

t→∞ q(t).

This property should be satisfied as a matter of course in
human multi-joint reaching because if a given pre-shaped
initial still state is stably transferable then there does not
arise any oscillatory or chaotic self-motion in reaching
movements starting from any still state in the vicinity of the
concerned pre-shaped posture. However, a rigorus mathe-
matical analysis for proving this property is rather difficult,
though the property is valid for most cases according to
computer simulations regarding robotic arms and numer-
ous observations on human limb motions.

8. Conclusion

This paper challenges Bernstein’s Degrees-of-Freedom
problem in the case of redundant multi-joint reaching
movements. By enhancing the EP-hypothesis for gener-
ation of reaching motions under the situation of excess
joints, the virtual-spring hypothesis is proposed, which
gives rise to the simplest structure of control signals with-
out solving any inverse kinematics and dynamics problems.
The control signal is composed of a term of task-space po-
sition feedback with a single stiffness parameter consid-
ered to evoke from the potential energy that the virtual-
spring retains and another damping term with different but
synergistic coefficients of damping at each joint. Regard-
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less of redundancy of joints, this simplest control results
in exhibiting typical characteristics of human-like skilled
motion such as a) invariance of the special shape of end-
point trajectories, b) bell-shaped profiles of endpoint veloc-
ity signals, c) double peaks of endpoint accelerations, and
d) noteworthy variability in each joint movement every trial
by trial. It is also discussed by referring to recent discover-
ies on mechano-chemical behaviours of molecular motors
that the task-space position feedback must be generated in
a feedforward manner in case of human limb motions.
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Appendix A

By using the inequality

kq̇THC−1JT∆x ≥ −1
2

q̇THq̇ − k2

2
∆xTJC−1HC−1JT∆x

and noting J(q)JT(q) ≤ 0.5I2, it is easy to check that, when
k = 8.0,

W(k;∆x, q̇)=
1
2

q̇TH(q)q̇ + k‖∆x‖2 + kq̇TH(q)C−1 JT(q)∆x

≥ k‖∆x‖2 − (k2/18)∆xTJ(q)JT(q)∆x

≥ k
(
1 − k

18
× 1

2

)
‖∆x‖2 ≥ 3

4
k‖∆x‖2
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