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Abstract– Passive dynamic walking robot can walk on 

a slight slope without actuators. It is interesting that the 

walking is a stable phenomenon and is the most natural 

motion. The authors claim that a control law in walking 

robot should be constructed based on the passive dynamic 

walking. In this paper, we introduce a stability analysis of 

passive dynamic walking and show a kind of simple 

control law based on delayed feedback control.

1. Introduction 

Robot, which has no actuators and walks down a 
slight slope, is called ‘passive dynamic walking robot’. It 
is well known that the passive dynamic walking robot is 
important and interesting target [1]. In the past papers, for 
example [2] [3], a stable steady periodic motion and a 
chaotic behavior of passive walking robot were analyzed 
by numerical simulations. To justify the numerical 
analysis, we showed the occurrence through experiments 
[4].  

It is interesting that the passive dynamic walking is a 
stable phenomenon and is the most natural motion. 
Therefore, we have claimed that a control law in walking 
robot should be constructed based on the passive dynamic 
walking. In this paper, we introduce a stability analysis of 
passive dynamic walking and show a kind of simple 
control law based on delayed feedback control. 

The construction of this paper is as follows. In 
Chapter 2, we introduce a passive dynamic walking, and 
show the stability of the walking through experimental 
results. Then, we analyze the stability based on Poincare 
Map. In Chapter 3, we show a design method of a kind of 
simple control law for Quasi-Passive Dynamic Walking 
Robot. And also show the effectiveness of the control law 
through experiments. Finally, we conclude in Chapter 4. 

2. Passive Dynamic Walking 

         In this chapter, at first, we introduce that the passive 
dynamic walking is a stable phenomenon [4]. Next we 
carry out the stability analysis of the passive dynamic 
walking. 

In Fig.1, we show a passive dynamic walking robot 
“QUARTET II’ developed by us. The robot has straight 
legs of the same length and four legs are connected via 

bridges and connecting links. Other four legs are also 
connected in the same manner. As the result, the robot can 
be regarded as a two-legged robot. This robot has no 
actuator but has potentiometers for measuring the angles 
of the legs. 
     Fig.2 shows the walking experimental results. In the 
figure, the graph of step number vs. step period is 
presented. As you can see in this figure, the passive 
dynamic walking is a stable phenomenon.  

Fig.2 Stability of the walking 

     Through some experiments, we also showed that a kind 

of bifurcation phenomenon can be observed in passive 

dynamic walking. Since, we are very interested in this 

stability property, we focus on the stability of the walking 

in the following sections. 

Fig.1 QUARTET II
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2.1 Model 

      We introduced our passive dynamic walking robot 

named QUARTET II in Fig.1. Although this robot has 

eight legs, because of its special link structure and 

symmetry, we can analysis it's motion by using a very 

simple biped walking robot model such as Fig.3. Then, 

hereafter, we use the biped walking robot model for 

analysis.
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Fig.3 Model 

Let the support leg angle be p , swing (non-supported) 

leg angle be w , a slope angle be parameter . And  is 

the support leg angle at the collision of the swing leg with 

the ground. 

The dynamic equation of the biped walking robot 

model in Fig.3 can be derived using the well known 

Euler-Lagrange approach:  

( ) ( , ) ( , )M N g .  (1) 

Where, [ , ]Tp w ( )M  is inertia matrix, ( , )N

is Colioris and centrifugal term, ( , )g  is gravitational 

term,  is input torque at the waist joints of the robot. In 

passive dynamic walking, =0.  

Here, we have a linear approximated dynamical 

equation of Eq.(1) at an equilibrium point as follows:  

0 0M G b .    (2) 

Here, setting [ , ]Tx , we have 

x Ax b B .    (3) 

Next, if we assume that a transition of the support 

leg and the swing leg occurs instantaneously and the 

impact of the swing leg with the ground is inelastic and 

occurs without sliding, the equation of transition at the 

collision can be derived by using the conditions of 

conservation of angular momentum: 

( ) ( )b aP P .   (4) 

Where, Pb( ) Pa( ) are the matrices determined from 

the physical information of the robot and the angle . In 

addition, using the matrices  
0 1 1 0

,
1 0 1 0

r aT T ,   (5) 

we have the following state transformational equation. 

1

0
( ) ( ( )) ( )

0

a

r a b

T
x t R x t x t

T P P
.  (6) 

Furthermore, we can regard that the collision of the swing 

leg to the ground occurs at timing when the state of the 

robot reaches a constraint plane. Therefore, using a 

constant matrix C=[1 1 0 0], this condition can be written 

as the following.  

0Cx .     (7) 

In the next section, the stability analysis of the 

passive dynamic walking is done by using the linearized 

state equation (2), the collision equation (4), and the jump 

condition (7). The state of the robot immediately before 

the swing leg lands on the ground is defined as "impact 

point". The point can be written as 

, ,( ) ( , , )Tk p k w kp k .   (8) 

2.2 Stability[5] 

Let *x  be the steady impact point during passive 

dynamic walking, and let *  be the steady walking period 

during the walking. Let  

*k kx x x     (9) 

be the state error at the k-th impact.  Then we have 

1 ( )k kx P x .    (10) 

Where P  is so called Poincare map. 
     Here, referring the method introduced in [5], we have 

   *

*

Ak
k d

x x

P
P Se R

x
.   (11) 

Where, 

*

* *
*

*

( )
, ,d

x x

v C

Cv
R x
x

S I R v Ax b . (12) 

This map (11)(12) can be obtained as the following. At 

first, let us see that the relationship between the two 

impact points 1,k kx x as

* 1 * *( , )k k k kx x x x x

        *

1 *
( )A

d k k ke R x v o .             (13) 

Also see that, since the states *,kx x  satisfy the jump 

condition, we have 0,kCx * 0Cx . Then using these 

equations, substituting the equation 

*

1

*

1
( )

A

k d k kCe R x o
Cv

             (14) 

into Eq.(12), then have Eqs. (11) and (12).   
Then, notice that Eqs.(13) and (14) can be rewritten as  

1

1

k A k B k

k K k

x Z x Z

Z x
(15) 

Where,  
*

*,
A

A d BZ e R Z v

*

*

1
,

A

K d k A B KZ Ce R P Z Z Z
Cv

(16) 
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Fig.4 Stability analysis of passive dynamic walking 

     From the above discussion, we can say that, as shown 

in Fig.4, a feedback structure is included in the Poincare 

map. This feedback structure plays an important rule in 

stability of passive walking. In other words, this is the 

reason why the passive dynamic walking is stable.  

 

3. Quasi-Passive Dynamic Walking 

     In the previous chapter, the stability of passive 

dynamic walking was discussed. This is a very interesting 

feature. But to develop a walking "robot" instead of 

"machine", we have to imbed a kind of controller in the 

robot. In this chapter, we introduce a control law 

developed by us based on the passive dynamic walking. 

3.1 Quartet III 

    Fig.5 shows the walking robot “Quartet-III” which was 

developed to study of Quasi-Passive Dynamic Walking. 

Fig.5 QUARTET III[6] 

The robot has the following features. 

The robot has a pair of legs. Each leg consists of the 

four legs which are connected each other by links. 

Therefore, QUARTET III can be regarded as a simple 

compass type walker shown in Fig.3. 

The robot has two Direct Drive Motors.  

Each leg has a DC motor for expansion and contraction 

of the length of the leg.  

The shape of the each foot is circle type. We knew 

through simulations that this shape is suited for passive 

walking.

The experimental setup of this system is shown in Fig.6. 
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Fig.6 Experimental setup 

3.2 Control Laws 

     In this section, we show the newest control method of 

Quasi-Passive Dynamic Walking. The control method is 

derived from the two previous control methods of Quasi-

Passive Dynamic Walking. The one is named as “Weekly 

guidance control method”[6] and the other is named as 

“Discrete-Delayed Feedback Control based control 

method”[7]. Because of the limitation of the space, we 

omit the explanation of the two methods.  

    The control law which we proposed is the following[8]. 

--------Continuous-DFC based control method-------

1 1( ) ( ) ( )k f k v k k p k kK K K    (17) 

( ) ( 1)k p k p k    (18) 

1

( )
1 cos 1 2

f

x

K x x
x

 (19) 

where k  is k  th step's [ , ]Tp w , 3
R is a constant 

matrix and 
M

is a norm defined by T

M
x x Mx  and 

a constant matrix 3M R . See Fig.7 for ( )fK x .

----------------------------------------------------------------- 
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This control method is developed by making use of 

the characters of the two previous our proposed control 

methods skillfully, and it have the following two big 

features. 

It regards ( ) ( 1)p k p k  as a function of the 

stability of robot's walking and regulates the tracking 

control gain depending on it. 

It realizes tracking control not with a reference 

trajectory which is made in advance but with the 

( 1)k th  trajectory of the robot. As a result, the 

reference trajectory is updated in each step. 

From the first feature, we can expect that a robot 

with the proposed control method will realize continuous 

walking easily than that with Discrete-DFC based control 

method. And, because of the term fK , the robot's walking 

will be able to converge to PDW easily. From the second 

feature, we can expect that, during a robot walks 

continuously, its walking will converge to the ideal 

trajectory [ , ]Tid id idr  without making correctly design 

of the PDW's trajectory. The proposed control method 

needs to make an initial reference trajectory 0 0 0[ , ]Tr .

However, since it can expected that the robot itself makes 

the ideal trajectory idr  during the walking, it is enough to 

make roughly design of 0r  with which robot's walking can 

start without falling down. This situation means the 

proposed control method overcomes Weekly guidance 

control method's problem which is how to make the 

reference trajectory. 

3.3 Experimental Results 

To show the effectiveness of the proposed control 

law, we carried out some experiments. The main part of 

the control law which we used is the following. 

1 1( ) ( ) ( )

( 1) 2 ( 1) ( 2)

0

f k v k k p k k

k p p p

K K K

if T k t T k T k

otherwise

. (20) 

This control  law means that the input torque is set as 

0 when the time from the (k-1)-th impact time ( 1)pT k  is 

longer than (k-1)-th step's walking period, that is, when 

there are no corresponding reference trajectories, and 

otherwise, input torques of Eq.(20)  are equivalent to that 

of Eq.(17). 

     Before carrying out the walking experiments, we 

obtained the trajectories of PDW id simr  by computer 

simulations in which the slope angle  was set as 3.0[deg] 

and we used them as the first reference trajectory 0r . The 

parameters in Eq.(20) were set as the following. 

25 0 10 0
,

0 25 0 10
p vK K   (21) 

5.0 0.0 0.0

0.0 0.1 0.0 , 0.5

0.0 0.0 0.1

  (22) 

     In Fig.8, we show the experimental result. The 

horizontal axis is time. And the vertical axis is torque of 

the two legs. 

Fig.8 Experimental result 

     As this figure shows, we can see that the torque of the 

legs convergence to zero. That is, we could achiev Quasi-

Passive Dynamic Walking.  

4. Conclusion 
    In this paper, we introduced that the phenomenon of 

passive dynamic walking is stable. And then,  showed a 

kind of simple control law based on delayed feedback 

control. We called the control law as Continuous-DFC 

based control method, and showed the effectiveness of the 

method through experiments. 

References 

[1] T.McGeer, ”Passive dynamic walking”, Int. J. of Rob. Res., 

vol. 9, no. 2, pp.62-82, 1990. 

[2]A.Goswami, B.Thuilot, and B.Espiau, “A study of the passive 

gait of a compass-like biped robot: Symmetry and chaos”, Int. 

J. of Rob. Res., vol. 17, no. 12, pp. 1282-1301, 1998. 

[3]M.Garcia, A.Chatterjee, A.Ruina, and M.Coleman, “The 

simplest walking model: Stability, complexity and scaling”,  J. 

of Biomechanical Engineering, no. 120, pp. 281-288, 1998. 

[4]K.Osuka and K.Kirihara, ”Motion analysis and experiments 

of passive walking  robot Quartet II", Proc. of the 2000 IEEE 

Int. Conf. on Robotics & Automation, pp.3052-3026, 2000. 

[5]Y.Sugimoto and K.Osuka, “A Consideration of feedback 

structure which exists in passive dynamic waking”, Proc. 

Symposium on Control Theory  SICE, 2004 ( in Japanese). 

[6]K.Osuka and Y.Saruta, “Development and control of new 

legged robot Quartet III”, Proc. of the IEEE/RSJ Int. Conf. on 

Intelligent Robots and Systems 2000, pp. 991-995,2000. 

[7]Y.Sugimoto and K.Osuka, “Walking control of quasi-passive-

dynamic walking robot Quartet III based on delayed feedback 

control”, Proc. of the 5th Int. Conf. on Climbing and Walking 

Robots 2002, pp. 123-130, 2002. 

[8]Y.Sugimoto and K.Osuka, “Walking Control of Quasi Passive 

Dynamic Walking Robot "Quartet III" based on Continuous 

Delayed Feedback Control”, Proc. of IEEE Int. Conf. on 

Robotics and Biomimetics 2004, 2004 

82


