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Abstract—This paper discusses a new approach
to state-space modelling of multivariate time series
obtained from spatially extended dynamical systems.
Since the assumed true states are unobserved and
high-dimensional, their estimation poses an inverse
problem. By discretising both time and space and as-
suming a stochastic autoregressive dynamics, it is pos-
sible to apply Kalman Filtering to this problem. Addi-
tional approximations are introduced into the filter in
order to obtain an efficient implementation by properly
exploiting the spatial structure of the problem. The
model is fitted to time series data by using likelihood
maximisation. Also the covariance of the stochastic
component of the model may depend on time and
space by a suitable autoregressive model. We demon-
strate the feasibility of the proposed algorithm by pre-
senting a numerical simulation designed to imitate the
situation of the generation of electroencephalographic
recordings (EEG) by the human cortex.

1. Introduction

In many fields of science (such as oceanography, geo-
physics or medicine) spatially extended systems are
studied which evolve in time according to some pos-
sibly complicated dynamics. It is a typical situation
that the relevant state variables of such systems can-
not be observed directly, but only through an observa-
tion function; in many cases this function performs a
projection of the high-dimensional true state space of
the system onto an observation space of much lower
dimension. The task of retrieving estimates of the
true states from such observations represents a typi-
cal inverse problem. Due to the absence of a simple
invertible relationship between state and observation
such problems are ill-posed, i.e. the solutions (“inverse
solutions”) are unstable and ambiguous.

Let the unobserved true states of the system be
given by a vector field x(r, t), where r and t denote
space and time, respectively. By discretising space into
a set of grid points and stacking the corresponding lo-
cal state vectors a global state vector X(t) is defined [1].

Let Y(t) denote a vector of simultaneously recorded
measurements; in this paper we assume a linear obser-
vation equation:

Y(t) = KX(t) + E(t) , (a)

where E(t) denotes a vector of observational noise. K
is assumed to be known and full-rank. Note that, al-
beit typically dim(X) À dim(Y), the task is to es-
timate the unknown states X from time series of Y;
this constitutes the inverse problem. Considering the
example of the dynamics of human brain, the mea-
surements may be given by a 18-dimensional vector
of electroencephalographic recordings (EEG), whereas
the “true” states (i.e. the unobserved sources) would
be a (3433 × 3)-dimensional vector composed of local
current density vectors on a set of 3433 grid points
(voxels) covering the gray-matter parts of brain.

2. Spatiotemporal dynamics

For the dynamics of the global state X a general
multivariate pth-order autoregressive (AR) model

X(k) = F(
X(k − 1),X(k − 2), . . . ,X(k − p) |ϑ)

+ H(k) (b)

is assumed, where k denotes discretised time, p denotes
an integer model order, ϑ denotes a vector of model
parameters and H denotes the global noise vector.

So far such inverse problems have been addressed al-
most exclusively within the framework of constrained
least squares methods [2], and the temporal (i.e. dy-
namical) aspect of the problem has either been ignored
entirely or included only through an arbitrary con-
straint without justification from the data [3].

In principle, it is possible to apply Kalman Filter-
ing and maximum likelihood estimation directly to
equations (a) and (b) (within a chosen model class),
but due to the very high dimension of X, the prac-
tical application will be infeasible in terms of com-
putational time and memory consumption. However,
we will now present a set of approximations which al-
lows us to decompose this intractable high-dimensional
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filtering problem into a set of coupled tractable low-
dimensional filtering problems, each of which is cen-
tred at one grid point [4]. For this purpose we are
imposing the following assumptions on the function F :

(α) F is linear:

X(k) =
p∑

κ=1

A(κ)X(k − κ) + H(k) ,

where A(κ) is a set of parameter matrices (of size
dim(X)×dim(X)), replacing ϑ. Such model shall
be denoted as AR(p).

(β) The model order p is at most 2:

X(k) = A(1)X(k − 1) + A(2)X(k − 2) + H(k)

(γ) Direct interactions exist only between neighbour-
ing grid points: A(κ) = (aκ + bκ) IX − bκL, where
IX denotes the unity matrix of size dim(X) ×
dim(X), and L is a discrete spatial 2nd-order
derivative matrix operator (Laplacian), acting on
the spatial array of grid points. Most elements
of A(κ) become zero by this assumption, thereby
simplifying the model fitting. Through additional
homogeneity and isotropy assumptions the pa-
rameters aκ and bκ become independent of the
grid point index.

(δ) E(k) is Gaussian white noise with diagonal covari-
ance matrix Cε = σ2

ε IY.

(ε) H(k) is Gaussian white noise with (non-diagonal)
covariance matrix CH = σ2

H(L†L)−1.

Assumptions (α), (β) and (δ) can be relieved during
later work. Assumptions (γ) and (ε) are essential for
the decomposition of the global high-dimensional fil-
tering problem into spatially localised low-dimensional
filtering problems. They can be interpreted as a direct
consequence of discretising stochastic partial differen-
tial equations as given by

∂p x(r, t)
∂t p

= b
∂2 x(r, t)

∂r 2
+ η(r, t) , (1)

where ∂2/∂r 2 corresponds to the Laplacian operator
L, and η(r, t) is an integrable noise term. Obviously,
a model order of p = 1 yields a diffusion equation,
whereas a model order of p = 2 yields a wave equation.

The detailed definition of the spatiotemporal
Kalman Filter, which corresponds to this model, is
given in [1].

3. Parameter estimation

The modelling of actual multivariate time series by
the class of spatiotemporal models described in the

previous section can be shown to be equivalent to ap-
plying a spatiotemporal whitening filter, in analogy to
the usual purely temporal whitening of time series data
in statistical modelling. The particular choice for CH,
given in point (ε) above, corresponds to spatial whiten-
ing, since if the states X are replaced by LX, CH will
be replaced by a diagonal covariance matrix [1].

Typically the parameter vector ϑ which charac-
terises the function F , is unknown and has to be es-
timated from data. Under the assumptions outlined
above we have for a 2nd-order autoregressive model,
AR(2), ϑ = (a1, a2, b1, b2); furthermore the covariance
parameters σ2

ε and σ2
H also have to be estimated. This

estimation step can be carried out by a maximum like-
lihood approach; the Kalman Filter is known to be a
convenient tool for providing estimates of the likeli-
hood L(ϑ, σ2

ε , σ2
H) of particular choices for the param-

eters [5].
More generally, we may also minimise the corre-

sponding Akaike Information Criterion

AIC(ϑ, σ2
ε , σ2

H) = −2 log L(ϑ, σ2
ε , σ2

H)+2
(
dim(ϑ)+2

)
,

which is designed as an unbiased estimator of (-2)
times Boltzmann entropy [6].

Let ∆Y(k) denote the observation prediction error
of the Kalman Filter at time t, |R(k | k − 1)| the de-
terminant of the observation prediction error covari-
ance matrix, Nk the length of the time series and
nc = dim(Y), then the AIC is given by

AIC(ϑ, σ2
ε , σ2

H) =

−2
Nk∑

k=1

(
log |R(k | k − 1)|+ ∆Y(k)† R(k | k − 1)−1 ∆Y(k) + nc log(2π)

)

+2
(
dim(ϑ) + 2

)
.

We have found that numerical minimisation of this
expression with respect to (ϑ, σ2

ε , σ2
H) is a computa-

tionally demanding but feasible task for EEG time se-
ries of a few hundred time points and brain models
of several thousand voxels [1]. The model correspond-
ing to the minimum of AIC represents the most likely
model for explaining the data and can therefore be ex-
pected to provide the best dynamical inverse solutions
which are available for the data, within the constraint
of the chosen model class. Since estimates of the state
estimation error covariance matrix of the unobserved
states are a central component of Kalman Filtering,
it is easily possible to provide error estimates for the
inverse solutions [1].

4. Covariance dynamics

As a generalisation of the case that the covariance
structure of the noise driving the dynamics is described
by a single constant parameter σ2

H, we now consider al-
lowing this parameter to depend on space (i.e. on the
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grid point index v) and on time. More specifically,
following the example of GARCH modelling in finan-
cial time series analysis [7], we explore the following
model:

log σ2
H(v, k) = log σ2

c + s1 log σ2
H(v, k − 1)

+s2 log
∑

i

[g(v, k − 1)∆Y(k − 1)]2i ,

where g(v, k − 1) denotes the local Kalman gain ma-
trix at grid point v; the sum extends over all vector
components of the local state. In GARCH modelling
the residuals of previous state predictions are used as
random elements of the assumed covariance dynamics,
but since in the case of inverse problems these are not
directly available, we have replaced them by the lo-
cal state prediction error of Kalman Filtering, i.e. the
difference between predicted and filtered local states.
Three new parameters σ2

c , s1 and s2 need to be chosen;
further work will be required for designing a system-
atic approach to their choice, which may be possible
by maximum likelihood, as well.

5. Simulation study

We will now present results for the estimation of
inverse solutions for a simulated spatiotemporal sys-
tem which imitates the typical situation given for the
generation of the human EEG. A model cortex is dis-
cretised into 3433 grid points, using an average prob-
abilistic brain atlas [8], and at each grid point (voxel)
a time-dependent 3-dimensional current density vec-
tor is assumed to represent the local state. A highly
simplified dynamics is implemented for these states by
using locally coupled autoregressive processes; how-
ever, for two spherical regions within the cortex, one
being located in frontal brain and the other in occip-
ital brain, the parameters of these processes are not
constant, but time-dependent, following a sine-wave
pattern, chosen in a way such that the local dynam-
ics becomes periodically unstable within these two re-
gions, and the corresponding activation spreads out
into the cortical grid, where it gradually damps out.
These spatially extended oscillations are intended to
imitate rhythmic activity, like alpha activity, which is
known to be typical of cortical dynamics. By using an
appropriate transfer matrix K (which can be estimated
from electromagnetic theory [9]) simulated EEG time
series are generated, shown in Fig. 1. A more detailed
description of this simulation can be found in [1].

As can be seen, the simulated EEG clearly displays
two oscillations (with different frequencies), corre-
sponding to the two oscillating source regions, but in
a quite blurred fashion. From this data set inverse
solutions are computed by
• cLS: a constrained least-squares method [2] which is

applied independently at each time point;
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Figure 1: Simulated EEG recording for 18 standard
electrodes; electrode abbreviations are given on the
vertical axis. The EEG potential is measured in arbi-
trary units versus average reference, time is measured
in seconds, assuming a sampling rate of the simulated
dynamics of 256 Hz.

• KF1: spatiotemporal Kalman Filtering with the sim-
plest possible dynamical model, i.e. AR(1) with con-
stant homogeneous covariance;

• KF2g: spatiotemporal Kalman Filtering with an
AR(2) model and GARCH modelling of covariances;

• KFp: spatiotemporal Kalman Filtering with the per-
fect model, i.e. the model employed in generating the
simulated data.

For two selected voxels, one of which (“OV”) was cho-
sen out of the frontal region displaying high-amplitude
oscillations, while the other (“NOV”) was chosen from
a non-oscillating region, the estimated time series of
the inverse solutions (modulus of local current density
vector) are shown in Fig. 2; for comparison, the true
evolution of local states is also shown (top panels). In
the figure the inverse solutions are shown only for the
first second (256 points) of the data displayed in Fig. 1.

From the figure it can be seen that the solution ob-
tained from cLS correctly retrieves the oscillation in
OV, but underestimates its true amplitude by a fac-
tor of approximately 2; in NOV spurious oscillations
are found. Both these errors are typical for the well-
known tendency of non-dynamical inverse solutions to
produce “blurred” solutions. The KF1 solution seems
not to offer obvious improvements over the instanta-
neous solution in this respect, although it can be shown
to be superior with respect to likelihood maximisation
[1]; we remark that the same holds true for an AR(2)
model (results not shown). The KF2g solution starts
at the beginning of the data with similar estimates
as also the other inverse solutions, but then after a
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Figure 2: True and reconstructed local states (modu-
lus of local current density) for the first half of the data
shown in Fig. 1 vs. time, for an oscillating voxel (left)
and a non-oscillating voxel (right). Note the different
vertical scale for left and right columns of figures. True
local states are shown (A1, A2), state estimates from
cLS (B1, B2), from KF1 (C1, C2), from KF2g (D1, D2)
and from KFp (E1, E2); see text for details.

transient of approximately 0.25-0.5 seconds arrives at
much better estimates: The oscillation amplitude for
OV is retrieved much better (although the wave shape
is somewhat distorted), and no spurious oscillation is
induced for NOV. The initial transient was to be ex-
pected for the GARCH dynamics. Finally, for compar-
ison also the case of the perfect model, KFp, is shown in
the figure, i.e. the case of providing the spatiotemporal
Kalman Filter with the exact model which had been
used for generating the data. It can be seen that, after
an initial transient, for both grid points very good esti-
mates are achieved. Of course, in real applications the
perfect model will never be available; nevertheless this
result is not trivial, since also in this case the Kalman
Filter has to estimate 3 × 3433 = 10299 unobserved
state variables from only 18 measurements. These re-
sults suggest that the identification of an appropriate
model forms a crucial precondition for obtaining in-
verse solutions of improved quality.

6. Conclusion

In this paper we have discussed and extended a gen-
eral framework for obtaining inverse solutions for spa-
tially extended dynamical systems through a recently
proposed new variant of Kalman Filtering [1]; in par-
ticular, we have proposed to link this methodology
with the concept of GARCH modelling of covariance.

Through a simulation study, taken from the field of
EEG source analysis, we have demonstrated the feasi-
bility of this new approach and its potential for pro-
viding considerably improved inverse solutions.

We have only been able to present the core ideas and
first results, while many questions still remain open.
First, we are not yet able to propose a systematic ap-
proach for choosing the parameters of the GARCH
dynamics, (σ2

c , s1, s2); it is clear that they need to be
chosen properly, otherwise the GARCH effect will not
be initiated. So far we have not succeeded to em-
ploy the maximum-likelihood method for this task, al-
though in principle this should be possible. A similar
remark applies to the estimation of variances for in-
verse solutions, i.e. the estimation of error intervals;
while for the spatiotemporal Kalman Filter with ho-
mogeneous covariance it was shown to be possible to
obtain credible estimates of the error (as demonstrated
in [1]), this has not yet been achieved for the gener-
alisation to GARCH modelling of covariance. These
issues remain to be addressed in future work.
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