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Abstract—We propose a deterministic algorithm for ap-
proximating a generating partition from a time series using
tessellations. Using data generated by the Hénon and Ikeda
maps, we demonstrated that the proposed method produces
partitions that uniquely encodes all the periodic points up
to some order.

1. Introduction

In nonlinear time series analysis, symbolic approaches
have been sometimes used, for example, in evaluating sur-
rogate data [1] and parameter fitting [2]. In these applica-
tions, a big problem is how to define a partition for generat-
ing a symbolic sequence. The most preferable partition is a
generating partition, which assigns a point on the attractor
a unique infinite symbol sequence. There are few methods
known for finding a generating partition for a time series.
Recently, Kennel and Buhl [3] proposed a method for esti-
mating a generating partition, which assigns symbols so as
to avoid topological degeneracies.

This paper intends to propose a method for estimating
a generating partition from a time series [4]. It is signifi-
cantly different from that of Kennel and Buhl [3] in that the
proposed method will minimize the discrepancy between
the original time series and a time series defined by its sym-
bolic dynamics.

2. Algorithm

First we define some technical works to introduce the
algorithm. A partition is a set of disjoint subsets of a
state spaceM whose union covers the whole state space.
Each point in the state space belongs to just an element
of the partition because they are complete and disjoint. If
we assign a symbol to each element of the partition, each
point in the state space can be labeled with a symbol over
alphabetA. In the same way, we can generate, from a
time series· · · xt−1, xt, xt+1 · · · of states, a symbol sequence
· · ·Xt−1,Xt,Xt+1 · · ·.

If the time series is generated from a deterministic sys-
tem of an invertible map, the information thatXt is a cer-
tain symbol locates the partition element thatxi belongs
to. If we know thatXt−mXt−m+1 · · ·Xt+n is a certain set
of symbols, orsubstring, thenxt can be located more
finely by considering the intersection of images and pre-
images of the partition elements [5]. For convenience,

we use “.” to show thecenter of substrings, that is,
Xt−mXt−m+1 · · ·Xt−1.Xt · · ·Xt+n and call this thesubstringfor
xt. We also write it asX[t−m,t+n] if it is obvious. Generally, a
longer substring localizes a state better. LetΦ[−m,n](M) be
the set of all the admissible substrings of length (m+n+1).

We can a partitiongeneratingif any two states can be
distinguished by some finite length substring, except possi-
bly for a set of states of measure zero [6]. This means that
with probability one, a state, or a trajectory, is uniquely
identified using an infinite symbol sequence, which is a bi-
directional extension of the substrings. If the partition is
generating, the dynamical system is (almost everywhere)
equivalent to the corresponding symbolic dynamics.

If a partition is close to being generating, one can ex-
pect that states with the same substring are close to each
other, and they are well represented by a single point. Let
us assign to each substringS ∈ Φ[−m,n](M) a pointrS, and
call it representativefor S. Typically a representative is a
center of the sub-partition, which is the intersection of the
corresponding images and pre-images.

Representatives can be used for two purposes. The first
purpose is to roughly locate a point via a substring. The
second purpose is to approximate the partition. This second
purpose needs to be explained more.

If we tessellate the state space using the representatives,
we can obtain a good approximation of the partition. For
each substringS, we define its tileTS to be the set of points
in M whose nearest representative isrS, that is,

TS = {x ∈ M : ‖x−rS‖ ≤ ‖x−rS′‖,∀S
′ ∈ Φ[−m,n](M)}. (1)

Then for eachA ∈ A we collect all tilesTS for S =
S−m · · ·Sn, satisfyingS0 = A, to form a set,

BA,[−m,n] = ∪{TS : S ∈ Φ[−m,n](M),S0 = A}. (2)

This BA,[−m,n] is a good approximation ofA.
Let

R[−m,n] = {rS : S ∈ Φ[−m,n](M)}. (3)

Given a symbol sequenceX1,X2, · · · ,XN = X[1,N] , we can
generate a pseudo orbit{rX[t−m,t+n] }

N−n
t=m+1. We claim that the

following minimization yields good estimates of the gener-
ating partition:

min
R[−m,n],A

N−n∑
t=m+1

‖xt − rX[t−m,t+n]‖
2. (4)
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Figure 1: Initial partition for the H́enon map. The symbol
× shows the fixed point, and+ the periodic points of period
2. Blue and green points show the points initially labeled
by symbols 0 and 1, respectively.

This is the minimization of the distance between the orig-
inal time series and a pseudo orbit defined by the symbol
sequence and representatives over the representatives and
partition. However, this minimization is awkward as we
need to specify the partition directly. The partition is nec-
essary here for generating a symbol sequence. Therefore,
we change the minimization in the following way:

min
R[−m,n],X[1,N]

N−n∑
t=m+1

‖xt − rX[t−m,t+n]‖
2. (5)

We call
∑N−n

t=m+1‖xt − rX[t−m,t+n]‖
2 discrepancy.

To solve this minimization, we use an iterative algo-
rithm:

1. FixingR[−m,n], find a symbol sequence such that

min
X[1,N]

N−n∑
t=m+1

‖xt − rX[t−m,t+n]‖
2. (6)

2. FixingX[1,N] , find a set of representatives such that

min
R[−m,n]

N−n∑
t=m+1

‖xt − rX[t−m,t+n]‖
2. (7)

3. Go back to Step 1. until it converges.

Equation (6) is hard to minimize. Instead of solving it
directly, we use the tessellation for approximating the sym-
bol sequence.

There could be two possible methods for preparing the
initial condition. For the initial condition, we may use pe-
riodic points of low periods. When a partition is generat-
ing, periodic points should be uniquely encoded. There-
fore, conversely we assign symbols for periodic points in a
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Figure 2: The obtained partition for the Hénon map. The
solid line is the estimated partition and the dashed line
is the generating partition conjectured by Grassberger and
Kantz [12].

way that they are uniquely encoded. This technique is used
in previous work [7, 8].

The second method for preparing the initial condition is
using equiprobable bins along an axis. We pick up one
of axes and find numberA of equiprobable bins. Label-
ing each bin with a different symbol gives an initial sym-
bol sequence, from which we can construct an initial set of
representatives. Using the median for discretizing the time
series is a common technique in surrogate data analysis [1].

Therefore, practically we use the following algorithm for
the approximation.

1. We prepare an initial partition.

• If we use unstable periodic points, first detect
them from a time series. (We use the method of
Ref. [9], but there are more sophisticated meth-
ods such as Ref. [10, 11].) Assign to each un-
stable periodic point a substring of lengthl of
type S−m · · ·S−1.S0 · · ·Sn(m = bl/2c and n =
b(l − 1)/2c) over alphabetA so that the unsta-
ble periodic points are encoded uniquely. Let
each unstable periodic point be the representa-
tive rS[−m,n] of the substringS[−m,n] ∈ Φ[−m,n](M).

• If we use a set of equiprobable bins, pick up an
axis and prepare the equiprobable bins. LetBi

be thei-th bin, andAi , the corresponding sym-
bol. If xt ∈ Bi , then labelXt to be Ai and
obtain the initial symbol sequenceX[1,N] . For
t = m+1, · · · ,N−n, classifyxt depending on its
substringX[t−m,t+n]: Let CS[−m,n] = {xt : m+ 1 ≤
t ≤ N − n,S[−m,n] = X[t−m,t+n]}. The setCS[−m,n]

is a set of points whose currently allocated sub-
string isS[−m,n]. Lastly find the representativerS
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Figure 3: Initial partition for the Ikeda map. The symbol×
shows the fixed point, and+ the periodic points of period
2. Blue and green points show the points initially labeled
by symbols 0 and 1, respectively.

for each substringS by

rS =
∑
y∈CS

y
|CS|
. (8)

2. For each observed pointxt, find its closest representa-
tive rS−m···S−1.S0···Sn. Then makeXt to beS0.

3. Classifyxt depending on its substringX[t−m,t+n]. Then
we obtain a setCS of points with each substringS.

4. For each substringS ∈ Φ[−m,n](M), update its repre-
sentative:

rS =
∑
y∈CS

y
|Cs|
. (9)

5. Return to Step 2. until the set of representatives and
the symbol sequence no longer change, or they cycle.

6. Increase the length of substrings byl ← l + 1, m←
bl/2c, andn← b(l − 1)/2c. Return to Step (3) until a
stopping criterion is achieved.

There could be several possible stopping criteria. In this
paper, we use two stopping criteria. One is we stop the al-
gorithm when

∑N−n
t=m+1‖xt − rX[t−m,t+n]‖/(N −m− n) becomes

sufficiently small. The other is we stop the algorithm when
the substrings reach a certain length and the algorithm con-
verges.

3. Examples

Now we apply the proposed algorithm to examples. The
first example is the H́enon map: (ut+1, vt+1) = (1 − au2

t +

bvt,ut), where (a,b) = (1.4,0.3). The following calcula-
tions takext = (ut, vt) and use a time series of 10 000 data
points.
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Figure 4: Partition estimated for the Ikeda map. The blue
and green points show the points labeled with symbols 0
and 1, respectively.

In this example, we decided to stop the algorithm when∑N−n
t=m+1‖xt − rX[t−m,t+n]‖/(N − m− n) < (0.05)2. The algo-

rithm was initialized using the unstable periodic points of
order up to 2. We assigned the initial substrings as shown
in Fig. 1.

The algorithm stopped when the length of the substrings
was 13 and 883 representatives were used. The obtained
partition was shown in Fig. 2. It is very close to the gener-
ating partition conjectured by Grassberger and Kantz [12].
The difference between the two partitions is just 22 sym-
bols out of 10 000 symbols. We confirmed that this parti-
tion can encode periodic points uniquely up to period 17.

The second example is the Ikeda map: (ut+1, vt+1) = (1+
a(ut cosθ − vt sinθ),a(ut sinθ + vt cosθ)), whereθ = 0.4−
b/(1+ u2

t + v2
t ), a = 6, andb = 0.9. We generated a time

series of length 10 000.
We initialized the algorithm using the unstable periodic

points up to period 2. We assigned the initial substrings to
the periodic points as shown in Fig. 3.

The algorithm was stopped when
∑N−n

t=m+1‖xt −

rX[t−m,t+n]‖/(N − m − n) < (0.05)2. Then the length of
substrings was 11 and the partition contained 1386 repre-
sentatives. The obtained partition is shown in Fig. 4. It was
confirmed that the partition encodes the unstable periodic
points uniquely up to period 8.

4. Comparison with Kennel and Buhl [3]

Recently Kennel and Buhl [3] also published a method
for estimating a generating partition from a time series.
They estimate a generating partition by reducing the topo-
logical degeneracies, the points which are close in the sym-
bolic space but far apart in the state space.

The proposed method enjoys some advantages over that
of Kennel and Buhl [3]. The first advantage is that our
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Figure 5: Partition obtained for the bubble data. Symbols
+ show the positions of the representatives.

method works in a deterministic manner, it means, it is ex-
pected too run fast, while the method of Kennel and Buhl
contains a stochastic optimization. The second advantage
is that our method contains fewer parameters to specify in
advance than that of Kennel and Buhl. The third advantage
is that our method is justified with proofs. For the details
of the proofs, see Refs. [4, 13].

In addition to these advantages, there is a difference in
the performances. We applied the proposed algorithm to
the bubble data, which is used in Kennel and Buhl [3].
After embedding the data in the two dimensional space
(ut,ut+1), we initialized the algorithm using the median of
the first coordinate. We stopped the algorithm when the
length of substrings reached 8. Figure 5 shows the obtained
partition. This partition is different from that obtained by
the method of Kennel and Buhl as each element of the par-
tition in Fig. 5 is contiguous.

There are some possibilities which caused this differ-
ence. One of the possibilities is that there exist some gener-
ating partitions for this system. Another possibility is that
dynamical noise may make a difference between the two
methods. The cause of this difference should be explained.

5. Conclusion

We proposed a method for estimating a generating par-
tition from a time series. The partition is approximated by
tessellating the state space using representatives, or points
in the state space with a unique substring. Using this prop-
erty, we state the problem of finding a generating partition
as minimizing the discrepancy between the original time
series and a time series specified with a symbol sequence
and representatives. By solving this minimization problem
approximately using an iterative algorithm, we estimated a
generating partition.

We demonstrated that our method worked well with time

series generated from the Hénon and Ikeda maps. We also
discussed that the proposed method has advantages over
that of Kennel and Buhl [3] as it runs potentially fast, it
does not have many parameters to be specified in advance,
and it has a mathematical proof.
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