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Abstract– This paper provides a short review on the 

topic of global reconstructions of equations of motion from 
data series, and validation techniques. Any technique used 
to characterize an attractor may also be used to validate a 
model and, therefore, we also provide a review on 
characterization methods. This paper may be viewed as an 
introduction to a recently published book on the topic of 
“chaos and its reconstruction” [1]. 
 
1. Introduction 

 
Reconstructing equations of motion of time-continuous 

dynamical systems from time series defines the topic of 
global vector field reconstruction or flow 
phenomenological modeling. Reconstructing equations of 
motion of discrete-time dynamical systems defines the 
topic of global map reconstruction or map 
phenomenological modeling. Time-delay systems, not 
discussed in this paper, have also been considered [2]. 
Once a phenomenological model has been obtained, it has 
to be validated. Any technique used to characterize an 
attractor provides an opportunity for a validation 
technique. Accordingly, we briefly review the topic of 
global reconstruction of equations of motion from data 
series, and validation techniques. 

 
2. Basic background and overview of problems 
 

We consider non-linear dynamical systems. One topic 
of interest is, given a time series, to forecast the future, 
this may be done by local or global modeling. Global 
models may be viewed as local models in which all the 
data pertain to a single neighborhood which is the entire 
available phase space. In other words, a local model 
provides an atlas, i.e. a collection of local charts while a 
global model uses only a single chart. Global models, 
when successful, compress the data more efficiently than 
local models, are computationally faster, and provide a 
better knowledge of the vector field ( or map ) generating 
the data. 

In an extreme case, we possess a single scalar time 
series. Relying on a redundancy principle, according to 
which the evolution of any variable is influenced by the 
evolution of the variables which interact with it, we may 

provide an embedding of the time series in a phase space 
which will support the model. Many kinds of embeddings 
may be used such as time-delay embeddings, embeddings 
with principal components, differential embeddings. Our 
favorite embedding is the standard embedding, i.e. a 
particular differential embedding in which all non-
linearities are reported in only one component of the 
vector field. 

Another issue is noise and data preparation because, 
most usually, a time series is not ready for a global 
reconstruction. Noise reduction procedures may rely on 
filtering. But this may be a dangerous procedure because 
the filter possess its own dynamics. In another approach, 
we may work directly in a phase space with a trajectory 
adjustment technique. Data preparation may also include 
the removal of drifts which are often unavoidable in 
experiments. A particularly bad situation may occur in 
observational astronomy when the SNR is poor, and data 
cannot be regularly sampled at equal space time intervals. 
Then, beside filtering, interpolations may have to 
participate to data preparation. 

Once we have an embedding with possibly prepared 
data, reconstructions of equations of motion eventually 
require us to approximate one or several unknown 
functions by modeling functions, in the framework of the 
theory of nonlinear approximation of functions. Models 
will contain parameters. An important issue is then to 
avoid over-parameterization, relying on a parsimony 
principle telling us that the best model is the smallest 
model ( Occam’s razor principle ). This requires to 
quantify the size of the model. According to our 
bibliography, the most popular way to choosing the model 
size is by using a criterion due to Rissanen. The model is 
then generated under minimum description length 
constraints. 

Following a terminology used by L.A. Aguirre, a 
white-box modeling is a modeling from first principles. 
Black-box modeling is modeling from time series, without 
any prior knowledge of the system. This is the case for 
global models discussed above. In gray-box modeling, 
some amount of prior white information is poured into the 
black. Expectedly, this should result in a better global 
model, including more parsimony. The a priori 
information may for instance be used to delete terms 
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which, in the model, are not compatible with the 
information. 

Therefore, for gray-box modeling, any extra 
information is welcome. The worst black-box case is 
when we only possess a single time series. The landscape 
is whiter when all variables are measured or in the hybrid 
case when several variables, but not all of them, are 
measured. In these last cases, we apparently retrieved 
more information than required if we invoke the 
redundancy principle. But it is a fact that all variables are 
not exactly equivalent both in practice ( some variables 
are of easier use for modeling ) and possibly in principle 
in the case of an equivariant system, i.e. a system 
presenting some kind of symmetry. Indeed, an equivariant 
system usually displays two kinds of variables , i.e. 
equivariant variables ( containing information on 
symmetries such as variables x and y of the Lorenz 
system ) and invariant variables ( variables which do not 
contain any information on symmetries ). 
 
3. Global vector field reconstructions with standard 
embeddings 
 

We provide an example of a global vector field 
reconstruction with a standard embedding, and a 
polynomial model. Fig 1 provides a time series of the 
electrode current generated by a copper electrodissolution 
experiment, ( data from J. Hudson and Z. Fei, University 
of Virginia, USA ). Fig 2 represents a projection of the 
attractor ( in a 3-D phase space ) generated by the 
experimental data. Fig 3 represents similarly a projection 
of the attractor ( in a 3-D phase space ) generated by a 
phenomenological model built on the experimental data. 
The model is “visually” validated. 

 
Fig  1 

 
Fig  2 

 
Fig  3 

4. Global map reconstructions 
 

We similarly present the results of a global map 
reconstruction for a thermoionic diode with forcing ( data 
from T. Mausback et al, Kiel University ). Fig 4 displays a 
first return map based on experimental data. Fig 5 displays 
the associated first return map based on a global model. 
The model is “visually” satisfactory. 
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Fig  4 
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Fig  5 

5. Validation techniques 
 

When the original system is known, we may formally 
compare expansion coefficients for the original vector 
field and for the reconstructed vector field. Otherwise, we 
may also use visual validations ( as above ), records of 
probabilities of visit, generalized dimensions and 
entropies, checks for diffeomorphisms, Lyapunov 
exponents, synchronization, topological approaches 
( templates and populations of unstable periodic orbits ). 
As an illustration, we choose to discuss generalized 
dimensions to have the opportunity to point out a 
somewhat controversial issue. 

Fig 6 displays a comparison between Dq-spectra for an 
original Rössler attractor and for an associated model 
( named ISRS ). People accustomed to dimension 
calculations would claim that results for negative values 
of q are rubbish because they would require an 
unaffordable amount of data. Yet, similar data are 
displayed in fig 7 after improvements of the 
reconstruction algorithm [3]. The influence of the 
improvements is well exemplified. This points out to the 

fact that requirements for the dimension computations are 
not the same whether we deal with characterization of 
attractors or with validation of models. 

 
Fig  6 

 
Fig  7 

 
6. Applications of phenomenological modeling. 
 

It is possible to forecast without reconstructing 
equations. For instance, it may be sufficient to exploit a 
library of past patterns in a time series. But forecasting is 
one of the immediate applications of local or global 
models. 

Another important application, particularly of global 
models, is to provide surrogate data. For instance, a time 
series may be too unclean, too short, or exhibit significant 
drifts preventing a secure evaluation of some quantities 
such as fractal dimensions. If a global model can be 
obtained from these data, we may generate long time 
series of clean data without any drift. These data may be 
used as surrogate data for a better characterization of the 
attractor under study. 

Phenomenological modeling also produces an efficient 
compression of information. We may replace a large set of 
data by the formal representation of a simple 
mathematical function which may flow more efficiently 
through a communication channel. With respect to this 
issue, global models perform dramatically better than 
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local models. Starting from a huge amount of data, we 
may end with a formal representation of a vector field or 
of a map. 

Global models may also be used to control chaotic 
processes such as in Ref [4] where chaos is suppressed 
and the system is driven to a periodic orbit. They may also 
be used to secure the transmission of information along 
communication channels. 

Furthermore, a successful global reconstruction of 
equations of motion provides many deep insights on the 
underlying dynamics. When it relies on an embedding 
technique, it defines the minimal embedding dimension, 
that is to say the minimal number of coordinates required 
to describe the dynamics. If we thereafter decide to build a 
physical model from first principles, then we know from 
the beginning that our physical model should not use more 
variables than the phenomenological model. 

Also, a successful global reconstruction provides us 
with a strong test to decide whether or not the system 
under study is deterministic. Such a test is more 
convincing than the evaluation of the fractal dimensions 
which has been used in earlier stages, and led to 
controversial results. 

Global models may also be used for signal detection, 
i.e. identifying the presence of a deterministic contribution 
in a signal, and classification, i.e. assigning a detected 
signal to a particular class. 
 
7. Conclusion. 
 

We provided a brief review of the contents of the book 
of ref [1]. The topic of global reconstruction is now a 
mature field, with many applications. Much work remains 
to be done and we therefore hope that this paper could 
attract newcomers. 

 
 

References 
 
[1] G. Gouesbet, S. Meunier-Guttin-Cluzel, O. Menard, 
editors, “Chaos and its reconstruction”, Nova Science 
Publishers, Inc. New York, 2003 ( 317 pages, about 800 
references ). 
[2] B. P. Bezruchko, A.S. Karavaev, V.I. Ponomarenko, 
M.D. Prokhorov, “Reconstruction of time-delay systems 
from chaotic time series”, Physical Review E, 64, 056216-
1, 056216-6, 2001. 
[3] G. Gouesbet, J. Maquet, “Construction of 
phenomenological models from numerical scalar time 
series”, Physica D, 59, 202-215, 1992. 
[4] L.A. Aguirre, S.A. Billings, “Close-loop suppression 
of chaos in nonlinear driven oscillators”, Journal of 
Nonlinear Science, 5, 189-206, 1995. 

122


