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Abstract– MEMS and NEMS provide a novel and 

exciting medium where one can observe and utilize 
mathematical phenomena not often present in macro-scale 
systems.  By understanding thoroughly the dynamics of 
resonant MEMS, we can not only predict device behavior 
to eliminate unwanted effects, but also use nonlinear 
effects to design better sensors and systems. We present a 
basis for the development of sensors based on the 
parametric resonance phenomena.   As an example, a mass 
sensor, comprised of a single-crystal silicon micro-
oscillator with sensitivity at the pico-gram (10-12 g) level 
when operating in air. Is demonstrated This mass sensor 
detects mass change by measuring frequency shift at the 
boundary of the first order parametric resonance ‘tongue’. 
High sensitivity is achievable due to the sharp jump in 
amplitude caused by parametric resonance at predictable 
drive frequencies. The sensor results show that the 
sensitivity can be > 1 order higher than the same oscillator 
working at simple harmonic resonance mode in air.  
Higher sensitivity is expected when the oscillator design is 
optimized and dimensions are scaled.  

 
1. Introduction 

 
Resonant mode operation is common for many 
applications including on-chip mechanical 
filters/switches/mixers in the RF range [1], scanning 
probe microscopy [2], small force detection, among other 
sensors.  When operated in the linear regime as simple 
harmonic oscillators (SHO) there exists a tradeoff 
between the selectivity and the bandwidth of operation.  
In addition, at the microscale, the quality factor 
(governing selectivity) is primarily controlled by viscous 
damping which depends on the ambient conditions and 
cannot be controlled in open loop implementations.   
Parametrically resonant devices can be used to avoid a 
direct relationship between quality factor and 
selectivity/sensitivity for some of these applications. 

Parametric resonance has been well established in many 
areas of science, including the stability of ships, the forced 
motion of a swing and Faraday surface wave patterns on 
water. We have previously investigated a linear 
parametrically driven torsional oscillator [3] and along 
with other groups have mentioned applications including 

mass sensing, parametric amplification, and others.    As 
an example, we demonstrate a mass sensor which utilize 
parametric resonance.   

 
2. Example:  Mass Sensor 
 
2.1. Background 

 
As the technology of miniaturization develops rapidly, 
building micro/nano scale oscillators becomes possible 
with much smaller mass and much higher frequencies 
than traditional mechanical oscillation systems. The 
concept of tracking resonant frequency (or phase) shifts of 
micro/nano-oscillators in the simple harmonic resonance 
mode to measure mass change has become a well–
established technology in applications of chemical and 
biological sensing. Since the fundamental resonant 
frequency of simple harmonic resonance depends on the 
mass and stiffness of the oscillator, mass change can 
cause resonance frequency to shift and so can be tracked 
by monitoring this frequency shift. Eq.(1) and (2) describe 
the relationship between mass change and frequency shift. 
High sensitivity can be achieved in mass sensing using an 
oscillator with extremely small mass and high resonant 
frequency, thus attracting attention for sensor applications. 
In a microcantilever array, information on beam 
frequency shifts can be used for recognition of a variety of 
chemical substances.  
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Theoretically, any mass change in the sensing oscillator 
can cause a certain amount of frequency shift. However, 
the detection limit of frequency shift is governed by noise 
and the quality factor.  Quality factor (Q), which denotes 
the sharpness of frequency response curve of simple 
harmonic resonance, is one of the important factors that 
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limit the sensitivity of the simple harmonic resonance 
(SHR) based mass sensors [5]. 
 
In our previous work, we have reported the conceptual 
basis of mass sensing using the parametric resonance 
phenomenon [4].  In this approach, mass change is 
monitored by tracking the frequency shift at the stability 
boundary of the first order parametric resonance ‘tongue’. 
The frequency transition at this boundary is very sharp [3], 
thereby making small frequency changes easily detectable 
and the frequency shift resolution high.  The sharpness of 
the boundary does not depend on the quality factor.  
Therefore, very small mass change can be detected in 
high-pressure environments, such as in air or even in 
water, where the sensitivity can be as high as in high 
vacuum. 
 

 
 
2.2. Theoretical Basis of Operation 

 
The micro-oscillator, shown in Fig.1, can be simplified as 
a mass-spring system with electrostatic force as the 
driving force. When voltage is applied on the non-
interdigitated comb-fingers, the electrostatic force 
generated is dependent on the position of the 
oscillator[14]. In the experiments presented here, we use a 

square rooted AC voltage signal ( ( )
1
21 cos 2

A
V t!+ ) to 

isolate the parametric resonance from direct harmonic 
response [3]. The movement of the device is governed by 
the nonlinear Mathieu-Hill equation with cubic 
nonlinearity[4]. 
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where m, k1 
and k3 are the mass, linear and cubic mechanical stiffness 
of the oscillator respectively, c is the damping coefficient, 
r1 and r3 are linear and cubic “electrostatic stiffness” and 
τ=ωt is a normalized time [4].  

 Figure 2 schematically shows the dynamics of this 
nonlinear Mathieu equation in β-δ plane defined above. 
According to dynamic characteristics, β-δ plane can be 
divided into three areas. Area II (inside the “tongue”) is 
the resonance area of the first order parametric resonance 
with a non-trivial solution, while area I and III are non-
resonance area with one trivial solution in area I and one 
trivial solution plus one non-trivial solution in area III. 
The characteristics of solutions and phase plane in each 
area are schematically shown in Fig.2 as well, where “S” 
means stable and “U” means unstable. Here we only 
consider stable solution, since unstable solution cannot 
be observed experimentally. The dynamics can be more 
easily understand in an experimental frequency response 
as shown in Fig.3.   

Figure 3 shows the frequency response of parametric 
resonance inside Areas I, II, and III for the device shown 
in Fig.1. As the driving frequency goes up, the amplitude 
of the oscillator increases from the left boundary of area 
II and keeps increasing past the boundary of area III. The 
frequency at the right boundary of area II, where the 

“jump” happens, is given by 
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where k, m, VA and r are stiffness, mass, driving voltage 
amplitude applied and the coefficient of electrostatic force 
respectively. A small mass change (Δm) in the oscillator 
causes this “jump” frequency to shift (Δf). Therefore, by 
measuring the frequency shift, this mass change can be 

determined by 
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Figure 1. A SEM picture of the mass sensor. It has a 
backbone, 4 springs with folded beams to provide recovery 
force and one set of non-interdigitated comb-fingers to 
drive the oscillator. Pt deposition to change mass is 
schematically shown in this picture. 
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Figure 2. Dynamic characteristics of Nonlinear Mathieu 
Equation in the β-δ plane. β=1±δ  are the transition 
curves, which divide β-δ plane into Area I, II, III  

Figure 3. A frequency response curves of the first order 
parametric resonance inside and outside of stability 
region. Area II is inside of “tongue”, as shown in Fig.2, 
while I and III are outside. When sweep frequency down, 
resonance only happens in area II and there is completely 
no movement in area I and III. A sharp jump happens at 
the right boundary of area II near point P. 

The sensitivity of parametric resonance based mass 
sensor depends on the smallest frequency shift we can 
measure. Since the “jump” is a characteristic of nonlinear 
dynamics, where the characteristics of the dynamical 
equations change, the transition is very sharp and the 
change of frequency response is extremely ‘fast’ in the 

frequency domain. Therefore, the frequency at the 
boundary can be accurately defined. Very small frequency 
shifts caused by mass change can be easily detected. In 
previous work, a 0.001Hz frequency shift (in 58,000Hz) 
has been observed [16]. Damping affects the resonance 
boundary of the tongue, as shown in Fig.2. At high 
damping, for example in air, actuation of parametric 
resonance requires more energy than at low pressure. 
However, the characteristics of dynamics remain the same 
as in low damping environments and the transition is still 
very sharp. Therefore, the frequency at the boundary can 
be still accurately determined and damping has little effect 
on the sensitivity of parametric resonance based mass 
sensors. 
 
2.3. Experimental Mass Sensing Results 
 
To perform a test to find the ultimate sensitivity of this 
prototype device, the mass sensor was tested using 
adsorption of water vapor. The prototype oscillator is 
made of single crystal silicon. After it is exposed to air, a 
thin layer of native silicon oxide grows on the surface. 
This native silicon oxide can absorb water molecules 
when it is exposed to environment with humidity[6]. 
Therefore, the mass of the device changes as humidity 
level varies. A gas handling setup is built to control the 
water vapor content in testing chamber, as shown in Fig.4. 
A dry nitrogen gas flows through mass flow controller #1 
directly to the testing chamber and another dry N2 through 
mass flow controller #2 with water vapor from the water 
bubbler. By setting the flow rates of the two mass flow 
controllers, relative water content can be adjusted in the 
testing chamber. The frequency information of device #4 
at the right boundary of the first order parametric 
resonance area is recorded, as water content in the testing 
chamber changes. By adjusting the water content, the 
resolution of frequency shift can be found and 
corresponding mass change can be determined. Since the 
test is performed in a relatively short time and the 
humidity level is varied in a controllable way, errors 
caused by temperature fluctuation are negligible. Figure 5 
shows the results of frequency shift as the relative water 
content is adjusted. When water content is switched 
between 5% and 10% as shown in Fig.13 from A-B, the 
rate of frequency shift changes accordingly. As water 
vapor is turn on and off from B-C, the results shows good 
consistency between frequency shift and water vapor 
content change. The smallest resolvable frequency shift 
we can measure using this device is less than 2 Hz, as 
shown in Fig.13, which is equivalent to a 0.7 pg mass 
change. 

 

 

P 

141



   

 

 

Figure 5. Frequency shifts at the right side of the first 
parametric resonance area as water content is adjusted in 
the testing chamber 

 
2.6. Noise Effects 
 
As with other mass sensors, noise is an important 
consideration when developing mass sensing using 
parametric resonance technology. The ability to detect 
ultra-fine frequency shift because of the nature of 
parametric resonance is compromised by noise effects. As 
we mentioned earlier, a 0.001 Hz or even smaller 
frequency shift has been observed [6]. However, in our 
current experiment, the frequency fluctuation is much 
larger than this value and the standard deviation of this 
frequency fluctuation we measured in these two 
oscillators is about 0.8 Hz at room temperature. To 
analyze noise problems in mass sensing, we consider 
thermal noise, Brownian motion and Driving voltage 
fluctuation. Because of the complexity of parametric 
resonance, numerical simulation method is used to 
calculate the effects of these noise sources. Brownian 
motion of oscillators is attribute to be the main noise 

source in parametric resonance mass sensing. In room 
temperature, the standard deviation of Brownian motion is 
estimated about 0.5 Å, which brings about 0.7 Hz of 
frequency fluctuation. The result agrees well with 
measured result.  

Certainly, there are other issues, which can be considered 
noise effects in mass sensing, such as frequency drift 
caused by humidity fluctuation and temperature 
fluctuation in the environment. We notice that noise 
caused by this frequency drift can be larger than that 
caused by Brownian motion even with reference sensor 
when the test lasts days.   These issues are currently being 
addressed. 

To find the ultimate sensitivity  of this mass sensorg based 
on parametric resonance, we use the micro-oscillator to 
detect water content change in the testing chamber. By 
adjusting the water content, we observe the frequency 
shift simultaneously. Figure 8 shows the results of 
frequency shift of Device#4 as the relative water content 
is changed in air. When water content is switched between 
5% and 10% as shown in Fig.8 from A-B, the rate of 
frequency shift changes. As water vapor is turn on and off 
from B-C, the results shows good consistency between 
frequency shift and water vapor content. The smallest 
controllable frequency shift as shown in Fig.8 is about 2 
Hz, which is equivalent to mass change of 0.7 pg. 

3.  Conclusion 

Parametric resonance can be very useful in micro and 
nanoscale sensors.  We have demonstrated a mass sensor 
with pg sensitivity in air, which is nearly 2 orders of 
magnitude higher than the same sensor operated in a 
harmonically resonant mode.  Ongoing work involves 
improving the resolution through miniaturizing and 
optimizing  the design and detection processes.   
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