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Abstract—For coping with the emergent properties
of multi-component systems (embracing multi-circuit and
multi-sensory systems), macroscopic states need to be
identified. This can be achieved by means of clustering
algorithms. Using a nontrivial two-dimensional toy sys-
tem, we comparatively explain the advantages of our re-
cently developed sequential superparamagnetic clustering
approach. The ability to provide ‘natural‘, i.e. intrinsi-
cally unbiased, system states, excels our algorithm above
the standard methods, such as K-means or linkage meth-
ods. It is this ability that provides human-like perception.

1. Introduction

Clustering is a fundamental ingredient of cognition and
particularly important to, nowadays, prominent fields of
science dealing with multi-component, and multi-sensory,
systems. Recent applications include the fields of robotics
[1], chemoinformatics [2] and bioinformatics [3]. The ulti-
mate goal of clustering is to find natural classes of similar
items in a given set, where, usually, no information about
number of classes or class sizes is available. This search
for natural classes is complicated by a number of factors:
(a) Most clustering approaches are based on a similarity
measure, that discriminates between similar and dissimilar
data points. The problem of how to choose an optimal sim-
ilarity measure is highly nontrivial (it will, however, not be
discussed here.) (b) Sometimes, some items will belong to
several classes. This aspect can be handled with particular
care by using fuzzy logic. (c) Results of clustering have an
inherent branching nature. A priori, it is not clear which
clustering resolution provides the most natural, or useful,
classes.

Among the variety of clustering approaches, two meth-
ods are most widely used: The linkage methods family
(championed by Ward clustering [2]) and the K-means
method. Both methods, however, have obvious disadvan-
tages. In K-means clustering, the number of classes has to
be provided a priori. The results also depend on the ini-
tial placement of the cluster centers. Ward’s method, on
the other hand, provides a cluster hierarchy (dendrogram),
leading to the problem of finding the appropriate resolution
level. Both methods often fail to recognize clusters of com-
plex shape, as they are biased to recognize hyper-sphere
clusters [2]. Furthermore, nonuniform cluster densities are
a problem in both approaches, since it can be impossible
to find a global clustering level that provides the correct

classes (for non-trivial systems).
Our recently introduced sequential superparamagnetic

clustering (SSC) method [4] does not suffer from the dis-
advantages of the other methods. It neither requires any a
priori information about the number of clusters, nor does it
have a cluster shape bias. Moreover, it provides us with an
intrinsic criterion for the identification of natural classes.
This allows us to find the most natural clustering resolution
by using locally optimised levels. A performance com-
parison of this approach with the standard methods, us-
ing the example of fingerprint-coded chemical compounds,
has clearly demonstrated the power and superiority of our
method [4].

In this contribution, we first provide a short introduc-
tion to the SSC algorithm (for a detailed exposition of the
method, we have to refer to [4]). By comparing to K-means
and Ward‘s clustering, using a nontrivial two-dimensional
toy model, we give an intuitive understanding of the advan-
tages of SSC. Finally, as a real world application, we en-
ter the field of bioinformatics where we extract the natural
classes from the mitochondrial genomes of 20 mammals.
By using the Li sequence similarity measure [5], we obtain
the most stable branches of the corresponding phylogeny
tree.

2. Sequential Superparamagnetic Clustering (SSC)

Superparamagnetic Clustering (SC), which was intro-
duced in [6], implements clustering as a self-organised pro-
cess on an inhomogeneous Potts spin system. The sites of
the system are given by the data points to be clustered, and
a Potts spin variable si with si ∈ {1, ..., q = 10} 1 is assigned
to each site xi. The Potts spins interaction is described by
the Hamiltonian

H(S ) =
∑

(i, j)

Ji j(1 − δsis j ). (1)

The coupling strength Ji j between two sites xi and x j is a
a decreasing function of the distance |xi − x j|, considering
only the k nearest neighbor sites. The probability to find
the system in a certain configuration S is determined by
the canonical probability

p(S ) =
1
Z

e−H(S )/T
, (2)

1The choice of the q-value does not effect the clustering results [4].
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where the partition function Z = Z(T ) serves as a normal-
isation factor. The temperature T acts as a control param-
eter expressing the average energy of the system. As T
is increased, the systems typically undergoes a number of
phase transitions: (I) For small T , the system is in a ferro-
magnetic phase, where spins are likely to be aligned. (II)
For an intermediary T -range, a superparamagnetic phase
occurs. Strongly coupled spins tend to be aligned, whereas
weakly coupled spins behave independently. Thus, clusters
of aligned spins reflect the regions of similar data points.
By further increasing T , these clusters generally cascade
into smaller clusters, so that a hierarchy of classes and sub-
classes is obtained. (III) For high T , the system enters the
paramagnetic phase, where any order disappears and only
singleton clusters remain.

Clustering aims at the superparamagnetic phase, where
clusters emerge that are stable over large temperature in-
tervals. Among the data points, clusters can be identified
via the pair correlation criterion: Two points xi and x j be-
long to the same cluster, if the pair correlation Gi j exceeds
a threshold Θ,

Gi j =
∑

S

p(S )δsis j > Θ, (3)

where Θ can be freely chosen from the interval [1/q, 1 −
2/q]. To calculate Gi j, we need to scan the configura-
tion space for a series of temperatures T = {Tmin, Tmin +

∆T, ..., Tmax}. For that purpose, a Monte Carlo approach is
performed for each T . We use the Swendsen-Wang algo-
rithm [6], as this algorithm is able to sweep a representative
subset of configurations without getting stuck in local en-
ergy minima. Stable results are obtained within 200 Monte
Carlo steps.

As we have determined the clusters for different temper-
atures, we get back to the central question: How can the
most natural classes be identified? Natural classes (as visi-
bly discernable in Figure 1) are stable over whole ranges of
temperature. Usually, dense clusters are stable over broader
ranges of T , but sometimes they occur for high T only, in
particular when two clusters are too tight to be separated
at smaller temperatures. In the worst cases, such super-
clusters abruptly break up into singletons, without going
through an intermediate state. Less dense clusters gener-
ally only occur for small T . It may even happen that they
do not emerge at all, especially when the coupling is too
short-ranged (e.g., only two nearest neighbors couplings).

Data sets where the mean distances within some clus-
ters matches the distance between some of the clusters, are
most problematic. It is not absolutely obvious, which tem-
peratures are best for the identification of clusters and how
to choose the coupling between the sites (i.e. the number of
nearest neighbours). In this case, as was stated in the intro-
duction, only a local resolution, i.e., a local variation of T ,
is able to solve the problems. As T is a global parameter,
characterising the thermal equilibrium of the system, in or-
der to achieve a locally regulated resolution, we introduce

a sequential procedure.
For this procedure, we first cluster the original set using
SC. Then we extract the most stable cluster, i.e., the cluster
which is stable over the broadest temperature range. Af-
ter extraction, this cluster, as well as the residual set, are
clustered by SC separately. Again, the most stable clusters
are extracted and so on. As a result, we obtain sequences
of sets of increasing homogeneity. This allows to extract
the classes that appear most natural in their local context.
Natural classes are stable over a broad T -range, but do not
show stable sub-clusters over a broad range. Thus, the pro-
cedure provides us with a good criterion for natural classes.
The procedure also has the advantage that the results are
largely independent of the number of coupled neighbours
[4]. For typical data sets, the time complexity of the algo-
rithm is as for the Ward’s method (O(N2)).

3. Toy System

Figure 1 poses a two-dimensional nontrivial clustering
problem.

Figure 1: A two-dimensional nontrivial clustering problem.

By construction, four clusters are present. One dense
cluster consists of 180 points and has a nontrivial shape
(left). Another dense cluster, made of 50 points, is close to
the first cluster. A less dense cluster made up of 70 points,
extends towards the positive y-direction. Another sparse
cluster of 40 points extends towards the lower right cor-
ner. Based on a randomly drawn rectangular distribution,
it could possibly be subdivided into a left and a right sub-
cluster, making clustering ambiguous to some degree. Ad-
ditionally, there are two more points that pose severe prob-
lems: Firstly, the first cluster has a nontrivial shape, and,
secondly, the gap between the two dense clusters is of the
order of a typical distance between points of a less dense
cluster. This last point indicates that a local dependence of
the clustering resolution is necessary for successful clus-
tering. In the following, we compare the clustering results
of our algorithm to results of Ward’s method and K-means
clustering, where the latter are provided by a Matlab code
(adapted by the authors).
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Ward’s method cannot correctly distinguish among the
classes. At no stage of the hierarchy, do the four natural
clusters coexist. (Figure 2). In fact, the major problem of
the algorithm is due to the shape, and the neighbourhood,
of the dense clusters. Ward’s clustering subdivides the big
cluster into two units at a very early stage (Figure 3). Even
when Ward’s method is capable of clustering correctly, to
find a natural level criterion is an unresolved issue.
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Figure 2: Dendrogram for Ward’s clustering method. The
numbers indicate cluster sizes.

(a) Four clusters stage (b) Six clusters stage

Figure 3: Clusters defining the four and six clusters stage
of Ward’s clustering.

For judging K-means clustering, we have to assume that
the number of clusters K is known. Still, we are unable
to identify the four most natural clusters. K-means clus-
tering also fails when dealing with the shape and the close
neighbourhood of the dense clusters (Figure 4). A larger K
would rather split up a sparse cluster than separate the two
dense clusters. The solution for four clusters is indepen-
dent of the cluster centre initialisation. Nonetheless, it is
optimal in the sense of K-means clustering, demonstrating
the principal shortcoming of this method.

SSC, however, is able to exactly extract the four clus-
ters that intrinsically are most natural (Figure 5). As can
be seen in Figure 6, the four clusters are already present
at T = 0, when the entire data set is clustered (no fer-
romagnetic phase). This demonstrates that superparamag-

netic clustering easily deals with clusters of arbitrary shape,
by establishing a global (spin) order on the basis of local
interaction (via coupling). However, due to the different
densities of the clusters, their stability against an increase
in T is an individual property, making less dense clusters
marginally stable only. In the run of the sequential cluster-
ing procedure, these clusters are rendered ever more stable
(as they are no longer compared to other denser clusters,
but to their local background). Finally, they become easily
detectable as natural classes.
Figure 5b shows the typical dendrogram achieved by SSC.

The earlier a cluster extracted, the more compact it is. Each
extracted cluster is iteratively clustered, to detect potential
substructures. For the thin cluster of 40 points, two possi-
ble sub-clusters can be detected. Their T -stability provides
the information on how ‘natural‘ these clusters are. In the
present case, they are rather unstable. As a consequence, it
is natural to consider the cluster a whole natural entity. The
same holds for the detection of marginally stable subclus-
ters within the other detected classes.

4. Mitochondrial Genomes

In the problem of phylogeny, the goal is to determine
the evolutionary relationships among species. On the one
hand, the construction of phylogeny trees allows the re-

Figure 4: Solution for K-means clustering, assuming 4
clusters. *‘s denote the final position of the cluster centres.

(a) Clusters obtained by SSC
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(b) SSC-dendrogram.

Figure 5: Results for SSC.
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Figure 6: Cluster-size diagram for the first step performed
by SSC, where the size of occurring clusters is drawn in
dependence of T . Larger dots mark the four initial clusters.

construction of the evolutionary career of species, on the
other hand, identifying natural classes helps to identify pre-
served cousinhoods among species. A challenging question
is how to appropriately compare two genomes, i.e., how to
define the similarity measure. Li et al. [5] introduced an
information-based measure with metric property, that ap-
propriately handles complete genomes. For two sequences
x, y they define the distance d(x, y) as

d(x, y) = 1 −
K(x) − K(x|y)

K(xy)
, (4)

where K(x|y) is the conditional Kolmogorov complexity,
K(x) = K(x, {}) and xy denotes the concatenation of the
two strings. K(x|y) is the length of the shortest program on
an universal computer with input y and output x. As such,
it is not computable, but an upper bound can be found us-
ing the Lempel-Ziv algorithm [7]. Compression programs
(such as GENCOMPRESS[3]) implement this approach.
To demonstrate the efficacy of SSC, we took the distance
matrix of the mitochondrial genomes of 20 mammals (pro-
vided by [5]). Figure 7 summarises the obtained ‘natural‘
classes. Note that the SSC-dendrogram does not directly
provide a phylogeny tree, but the most natural classes in
order of their inherent compactness. A phylogeny tree be-
tween classes could be constructed afterwards. As the data
set is rather small, this application is more of a toy sys-
tem. Real world applications would aim at much bigger
data sets, for instance, of bacterial genomes.

5. Conclusion

To summarise, sequential superparamagnetic clustering
is an exceptionally reliable tool for clustering analysis. In
all nontrivial problems investigated, it yielded far better
results than the standard methods. The method intrinsi-
cally provides a criterion for an unbiased extraction of the
most natural classes, by determining the best clustering
resolution on a semi-local scale. In addition, the system
temperature T can be seen as an attention, or resolution,
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Figure 7: SSC-dendrogram for the genomes set.

parameter, which places clustering within the general con-
text of human, or artificial, cognition. In fact, identifying
’natural’ classes is a vital aspect to order perceptional data.
Like human beings, the presented method is able to find
such classes in an unsupervised manner and gives a first
and quick insight into the perceptual scene. However, once
identified, the classes could possibly be further subdivided
by increased attention or resolution. Thus, this clustering
method mimics human perception.
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