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Abstract—Currently, it is believed that synchronization
plays an important role in sensory information processing
in the primary visual cortex. It also has been proposed
that cortical neural networks develop under the constraint
of minimization of the total length of connections. We
study synchronization behavior, and information transfer,
in models of neural networks with variable architectures.
The investigation reveals that fractally coupled networks
with a bi-power law distribution of connections perform
best under the above constraints.

1. Introduction

The primary visual pathway relays information from the
retina across the lateral geniculate nucleus to the striate cor-
tex. The morphology of this cortex exhibit a vertical and a
horizontal structure. The former divides the cortex into lay-
ers, that process anatomically distinct, parallel inputs from
the retina [2]. In the cat, layer IVCα cells are believed to
possess orientation selectivity. These cells respond best to
a thin line that is aligned with the main axis of the recep-
tive field. A poor response is observed when the stimulus
is perpendicular to this axis. In the horizontal plane, dif-
ferent columns can be distinguished. Although the inputs
from the retina arrive by independent pathways, the pre-
ferred orientation of neurons in different layers of a column
is the same. Therefore, these columns are called orientation
columns; together, they build up a two dimensional orien-
tation map. Recurrent connections to areas of higher visual
processing embed the striate cortex within whole cortex.
An extended object activates a substantial portion of the
visual field, thus neural activity is distributed across many
different cortical columns, where the edges of the object
are encoded at different locations of the orientation map.
The binding hypothesis states that neurons that respond
to features of the same object, increase synchrony [12].
Whereas some studies appear to support this binding-by-
synchronization hypothesis [13], its validity, and in partic-
ular the reproductibility of the relevant key experiments re-
main heavily disputed [11, 14, 9].
Numerous constraints impose themselves on the organiza-
tion of cortical networks. The global connectivity needs
to be very sparse, in order to reduce the volume occupied
by long-range connections. It is assumed that the layout of

cortical areas minimizes the total length of axons needed
to join them [6]. Furthermore, severe metabolic constraints
need to be satisfied by the cortex in order to achieve an en-
ergy efficient neural network design [7].
To explore the network architectures that satisfy the above
mentioned constraints and properties, we use a coupled
map lattice (CML). The latter were introduced by Kaneko,
who also showed their importance in biology, particularly
as models of neural networks [5]. Recently, Roerig et al.
[10] determined the distribution of lateral connections in
the primary visual cortex (V1) of ferrets. In contrast to of-
ten assumed Gaussian distributions, the probability to find
two neurons connected in V1 shows a long tail, remines-
cent to an inverted power law. A CML with such a dis-
tribution was introduced by Raghavachari et al. [8] and
named fractally coupled network. These authors showed
that the degree to which such CML’s synchronize depends
upon the power law exponent. We have investigated the
speed of information transfer in these networks and ob-
served that fractally coupled networks are superior to near-
est neighbor coupled, Gaussian coupled, and exponentially
coupled systems [15]. It turned out that the fast informa-
tion transfer can be inferred from the network topology re-
quiring a fast decay of the probability distribution for short
range connections, and a long tail for long range connec-
tions. As a consequence, we arrive at an optimized net-
work topology by using a superposition of two power-law
distributions: The first distribution accounts for the fast de-
cay, and the second is responsible for the long tail. Indeed,
as we will show in this paper, networks with this bi-power
law architecture substantially increase the speed of infor-
mation transfer. Moreover, synchronization in these net-
works takes place with a decreased number of connections
per node and with a reduced total length of connections.

2. The Model

The architecture of the network is represented by the
adjacency matrixA of a finite connected graphΓ with N
nodes. According to the experimentally determined power
law, we construct the adjacency matrix of the network by
using that the probability that two nodes are connected

pi, j = θ | r i − r j |
−α +(1− θ) | r i − r j |

−β . (1)
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The exponentsα and β determine the decay behavior of
the distribution,r i denotes the position on the lattice, and
θ ∈ [0,1] the partition coefficient. Usingθ = 1, the system
can be changed from a globally coupled network (α= 0)
into a nearest neighbor coupled network (α→ ∞). For
α→ ∞, β = 0 and 0< θ < 1, the network is coupled to the
nearest neighbor with probability 1, and to all other nodes
with probability (1− θ), down to the cutoff. Hence, we
obtain a combined nearest neighbor- and random-coupled
network. The former property warrants that the associated
graph remains connected. For all intermediate values of
α andβ the network is fractally coupled. In the present
study we are using a one dimensional system on a ring with
reciprocal connections, implying that A is symmetric.
The dynamical system onΓ is a coupled map lattice with
discrete timet ∈ Z and state variablexi . The evolution of
the system is described by the equations

xi(t + 1) = f (xi(t)) + ε

 1
ni

∑
j, j∼i

f (x j(t)) − f (xi(t))

 (2)

for i = 1 . . .N. In the rhs expression,f is a differentiable
function mapping the intervalI to itself. ε ∈ [0,1] is the
coupling constant.ni denotes the number of connections
of nodei, and j ∼ i indicates the presence of a connection
between nodesi and j. Recently, Atay et al. [1] showed
that the stability of a synchronized solution of Eqn. 2 can
be established by the local condition

| eµ(1− ελk) |, (3)

whereµ is the Lyapunov exponent off , andλk is thekth-
eigenvalue of the graph Laplacian∆Γ. The matrixL of ∆Γ
is defined asL = I − Ã, whereI is the identity matrix and
matrix Ã is row-normalized. We used this criterion to de-
termine whether a network with a given adjacency matrix
synchronizes or not.
The information transfer in coupled map lattices can be
studied by monitoring the propagation of a perturbation in
these systems [3]. The flow of information is determined
by two contributions. First, the chaotic instability of a map
leads to an exponential growth of the initial perturbation,
and second, the coupling results in a Gaussian spreading.
To determine the speedv∗ of the wave front, the convective
Lyapunov exponent was introduced [4]. This then yields
for the critical velocity

v∗ =
√

4Dµ, (4)

whereD denotes the diffusion coefficient. We have shown
that the spreading of the perturbation can be written in
terms of a Markov process. This approach allows the de-
termination of the diffusion coefficient and of the velocity
without performing simulations. The explanation for this
is that for these systems, time and space coordinates re-
main uncoupled during system evolution. Thus,D can be
derived from a one dimensional random walk

D =
(N)2

8τN/2
, (5)

if the system is perturbed at the central position. To de-
termineτN/2, two absorbing states at positioni = 0 and
i = N + 1 have to be introduced. The mean first passage
time to reach the absorbing states can be calculated using
the transition probability matrixP

τ = (1− P)−1(1 . . . 1)T , (6)

where P is given asP = (1− ε)I + εN̂. Here,I denotes the
identity matrix andN̂ is equal toÑ, except that it accounts
for the two absorbing states. Finally,τN/2 is the entry ofτ
at positionN/2.

3. Results

We first characterize the graph of a fractally coupled net-
work. A typical probability distribution used in this study
is displayed in Fig. 1A. The parameter values areα = 0.5,
β = 10 andθ = 0.3 for a symmetrically connected network
with N = 512 elements and a connection length cutoffat
M = 256. This system is compared to a fractally coupled
network withα = 0.7 andθ = 1 (Fig. 1B). Both sys-
tems are at the border that separates the parameter space
into synchronous and non-synchronous behavior. The im-
portant point here is that the bi-power law distribution al-
ways remains below the one having one single exponent.
The complete graph can be characterized by the eigenvalue
spectrum of the adjacency matrix. For a random network,
a semi circle is obtained, whereas a scale free network is
characterized by a symmetric triangular shape. The spec-
tral density of a fractally coupled network is asymmetric
and reveals in the left part a peak-like structure (see Fig
1D). The origin of the peak might be due to the high prob-
ability for nearest neighbor coupling in these networks. It
occurs in a pronounced fashion only ifα > 1. Although a
similar asymmetry is observed in a bi-power law coupled
network, the spectral density is already very close to that of
a random-coupled network (Fig. 1C).
To follow the evolution of the CML, we used the logistic
map

f (x) = 1− ax2 (7)

to describe the dynamics of a single node (witha = 1.9).
This map is chaotic, with a Lyapunov exponent ofµ =
0.5419. The coupling constant is set toε = ni/(1 + ni),
which is close to 1 for all investigated networks. To es-
timate whether a network synchronizes or not (we con-
sider complete synchronization only) we used Eqn. 3. The
eigenvalues of the LaplacianL are semi positive. The
smallest eigenvalueλ0 = 0 corresponds to the constant
eigenfunction. As shown in [1], it is sufficient to study
eigenvalues larger thanλ0, where the one closest to zero
λ1 > 0 plays the dominant part. In all investigated net-
works, λ1 described the transition from irregular to syn-
chronized motion.
In order to study the transition to synchronization, we var-
ied the partition parameter in the range 0< θ < 0.5. It is
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Figure 1: Characterization of the graphΓ of fractally cou-
pled networks (N = 512). Probability distributionp(∆r)
for the presence of a connection between two nodes∆r
apart. Full lines: calculated curves. Scatter plot: two real-
izations, full triangles for the example withα = 0.5,β = 10
andθ = 0.23 (A), dots forα = 0.7 andθ = 1 (B). (C), (D):
Graph spectra corresponding to (A), (B), respectively. (D):
Additional spectrum withα = 1.5 andθ = 1. The scaling
factor is

√
np(1− p), wherep is the ratio of mean number

of connections per node divided byN − 1. The full line
represents the semi circle of a random-coupled network.

well known that forθ = 0 andβ = 10, the system does
not synchronize, whereas forθ = 1 andα = 0.5, it does.
Hence, by increasingθ, the range of coupling grows from
nearest neighbors to system size. As shown in Fig. 2A, the
transition takes place atθ = 0.21, or at a mean node degree
of dg = 15, see Fig. 2B. In contrast, a single power law
distribution withα = 0.7 yields an almost doubled mean
degree ofdg= 29.
For the energy consumption of the network, the mean num-
ber of connections per node is an important factor. Al-
though this number is substantially reduced in bi-power
law coupled networks, in purely random-coupled networks
the average number of connections per node required for
synchronization is even lower (dg= 12). However, as was
stressed by Klyachko et al. [6], cortical neural networks
appear to minimize their total length of connections. The
calculations reveal for the single power law network and
the bi-power law network a the total length of connections
of 528876 and 309306, respectively. Interestingly, with
390087, the random-coupled network falls between these
two numbers (where the results represent averages of 10
networks withN = 512 nodes each). Although the num-
ber of connections is reduced in random-coupled networks
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Figure 2: Transition to synchronization in fractally cou-
pled map lattices (parameters:α = 0.5,β = 10; average of
10 networks). Upper curve (circles) and lower curve (di-
monds) represent the condition of Eqn. 3 for the second
eigenvalue (A) Increasingθ from 0 to 0.5 reveals that the
transition occurs atθ = 0.21. This value corresponds to
nodes with an average degree of 15 (B).

compared to a bi-power law connected system (12 versus
15 for N=512), the total length of connections is signifi-
cantly larger in the former.
To investigate the speed of information transfer, we used

Eqn. 4 and Eqn. 5. Since the Lyapunov exponent of a sin-
gle map remains constant, in Fig. 3 only the square root
of the diffusion coefficient is displayed, for the bi-power
law (triangles), the single power law (squares) and the
nearest-neighbor coupled network (circles). The abscissa
represents the number of connections required to achieve
the corresponding speed of information transfer. This is
achieved by an increase of the cutofflengthM, which lim-
its the range of connections. Because these networks all are
first-nearest-neighbor coupled, forM = 1 the curves start at
the same point. The larger the cutofflength, the more is the
curve affected by the probability distribution. For the bi-
power law coupled network, the range of connections was
varied fromM = 1 to M = 240. Since the maximal value
of M is 256, the flattening of the curve for large numbers
of connections is a network-size effect. However, Fig. 3
clearly demonstrates that the velocity-enhancing effect of
the bi-power law distribution persists over the full range.

4. Summary

According to the binding hypothesis, distributed infor-
mation of the same object is aggregated by synchronization
in the visual fields. Furthermore, it has been proposed that
the cortical neural networks develop by minimizing the to-
tal length of connections. In addition, in a recent study of
the lateral network in the primary visual cortex, an inverted
power law distribution of connections was reported. To un-
cover the structure of a network that ideally fulfills these
requirements, we explored networks of different architec-
tures.
The analysis was performed using coupled map lattices.
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Figure 3: Information transfer in fractally coupled net-
works (Eqn. 4, Eqn. 5). The curves represent

√
D ver-

sus the number of connections (average of 10 networks)
for the bi-power law (triangles:α = 0.5,β = 2, θ = 0.21),
the single power law (squares:α = 0.7,θ = 1) and nearest
neighbor coupled networks (circles). Different number of
connections were obtained by varying the cutofflength.

We constructed a connection scheme with a bi-power law
distribution and compared it to a single power-law dis-
tribution. We first showed that the speed of information
transfer can be significantly enhanced, and second, that the
network synchronizes with a decreased number of connec-
tions (halved) and with a significantly reduced total length
of connections (≈60%). Finally, we showed that the to-
tal length remains markedly shorter than that of a purely
random-coupled network.
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