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Abstract—We outline a general framework for the sys-
tematic and consistent description of clustering methods.
Clustering is considered as a self-organized process, exhib-
ited by stochastic neural networks in the ”thermal” equilib-
rium. Classes of similar data items are found by identifying
groups of preferentially synchronized neurons. As illustra-
tions of our clustering framework, four clustering methods
are considered in detail.

1. Introduction

Clustering is one of the most fundamental information
processing techniques for dealing with large amounts of
data. Clustering provides a compact representation of in-
formation, and may thus be considered a prerequisite for
cognitive skills, such as pattern recognition and effective
communication. In the human cognition paradigm, some
classification skills clearly rely on unsupervised cluster-
ing. Based on similarities among the items, we are able to
group unfamiliar items without any external supervision.
To mimic such unsupervised processes, it appears natural
to use self-organizing systems. In this approach, clusters
appear as emergent spatio-temporal characteristics exhib-
ited by the whole system, although they result from the in-
teractions among the system components. Also in artificial
neural networks, groups of stochastic neurons that prefer-
entially express the same firing state, form natural clusters.
In this contribution, we therefore exploit the ansatz that the
identification of groups of synchronized neurons as a clus-
ter, provides us with the most general paradigm of cluster-
ing. Consequently, a variety of different clustering meth-
ods, inspired from magnetic systems, graph theory and op-
timization problems, will be reinterpreted from the neural
network point of view. These methods will be treated as
specific models of networks. This not only yields a consis-
tent terminology, it also allows for a straightforward com-
parison among the methods and provides a theoretical basis
for the introduction of novel and optimized methods.

We will start with some mathematical prerequisites
needed for our approach. Then our general framework will
be worked out. As an example, a novel method (called
Hopfield clustering) will be derived and applied to a two-
dimensional clustering problem. Finally, we will give a
reinterpretation of three popular clustering methods within
the presented framework.

2. The network framework for clustering

Let a set of n items be described by (usually high-
dimensional) feature vectors xi, i = 1 . . .n. Using an ap-
propriate similarity measure (e.g., Euclidian distance), we
can calculate values di j that express the similarity among
pairs of items {i, j}. The goal of clustering is to partition
the items into k different groups, such that the groups form
in a sense natural entities of similar items. The number of
groups k is a priori unknown, it emerges during the self-
organization process of the network.

In the neural network paradigm, each neuron of the
network represents exactly one data item. The synaptic
weights generally depend on the values di j in a nonlinear
way. The discrete time dynamics is governed by a, gen-
erally stochastic, update rule. The architecture of the net-
work therefore comprises the update rules that, given the
initial conditions, determine the synaptic weights. In this
way, each clustering method is described by one particu-
lar network architecture. Below, we outline how to iden-
tify clusters of preferentially synchronized neurons, and
develop general criteria how the different clustering ap-
proaches translate into specific update rules. Our terminol-
ogy will be the following: neurons occupy a finite set Q
of m possible firing states, i.e., si ∈ Q = {q1, ..., qm}, where
si is the actual state of neuron i. If si = s j, the two neu-
rons i and j are called synchronized. s(t) ∈ S denotes the
system’s firing configuration at time t, where S = Qn. By
structure we will understand the array of synaptic weights
j = (J12, ..., Jn−1n) ∈ J, where J is the space of all poten-
tial synaptic structures. For explicitly time or configura-
tion dependent network structures, we will explicitly write
j = j(s(t), t). The current state of the network, embracing
firing configuration and synaptic structure, will be denoted
by σ(t) = (s(t), j(t)) ∈ Σ = S × J.

In general, the update rules determine the current transi-
tion probabilities Pt, i.e.,

σ(t+1) = σ′ with probability Pt(σ′, σ(t), σ(t−1), ...). (1)

During this process, in most models only the firing con-
figuration s is changed. For some models, however, also
the structure of the network j changes. We will refer to a
structure change as learning. Update rules that change (si

or Ji j) only due to local information, will be called biologi-
cally suggestive. However, update rules that rely on proper-
ties exhibited by the whole network, will be considered as
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well. Clusters of preferentially synchronized neurons are
generally identifiable only after a long enough observation
time M. Technically, for their identification we proceed as
follows: For two neurons i and j, consider the empiric pair
correlation function G(i, j),

G(i, j) =
1
M

M∑
t=1

Π(t)δsis j (t), (2)

where Π(t) is a step weighting function whose specific
role will be discussed towards the end of the section. Let
G denote the relation {{i, j}|G(i, j) > Θ = 0.5}. Two
neurons i, j then belong to a cluster C if ∃ k1, ..., kl :
{i, k1}, {k1, k2}, .., {kl, j} ∈ G, where Θ is a fixed threshold
value (G-criterion). In order to obtain meaningful clus-
tering solutions, the network dynamics should be chosen
such that more ”similar” neurons more often share the
same state. Therefore, we assume that architectures come
equipped with time independent functions H (called a cost
function), that map a state σ into R:

σ ∈ Σ �→ H(σ) = Hj(s) ∈ R. (3)

The idea is that Hj(s) shall be lowest for configurations that
have many neurons (corresponding to similar items) in the
same state.

We first consider the case of a fixed structure (j(s, t) =
const). Then the costs determine a one-parameter family
of Gibbs distributions with parameter T ∈ [0,∞], i.e.,

p(Hj(s), T ) = pj,T =
1

Zj(T )
e−Hj(s)/T , (4)

with
∑

s p(Hj(s), T ) = 1. For networks with fixed struc-
ture, we demand that (4) determines the probability of a
firing configuration s. In this way, we come up with the
following criterion for the update process: By an update
process we shall understand a Markov process on the con-
figuration space S with (4) as steady state distribution.
In particular, this means that the empirical pair correlation
(2) approximates G(i, j) ≈

∑
s p(Hj(s), T )δsi,s j . For most

clustering methods, Hj(s) is explicitly known and (1) can
be derived from pj,T . Sometimes, however, (1) is given and
Hj(s) has to (and can) be constructed.

The Gibbs distribution is a natural choice from the net-
work, as well as from the clustering point of view: (I) It is
a natural choice from the network point of view, as it is the
equilibrium distribution of the canonical ensemble. T can
be interpreted as a (thermal) noise or fluctuation parameter.
The system is in equilibrium with its environment accord-
ing to a given noise level. Naturally, p(j, T ) is smaller for
higher costs and vice versa. (II) From the clustering point
of view: For T → 0, only the configuration(s) with the
lowest cost survives. Thus, cost optimization methods are
the T = 0 border cases and the update rule (1) can be any
appropriate optimization procedure. Often, H is minimal if
all neurons are in the same firing state (ferromagnetic mod-
els). In this case, T can be interpreted as a resolution (or

attention) parameter which determines, how strongly sim-
ilarities among items are weighted. For T → 0, the reso-
lution of the system is low, i.e., differences between items
are smoothed out and all items are clustered into one sin-
gle class. In fact, for ferromagnetic models, all neurons
are perfectly synchronized at T = 0 and only one cluster is
obtained. For increased T , the differences increase so that
only very similar items are clustered together. Accordingly,
for T → ∞, all configurations are equally probable, indi-
cating independent neurons and thus independent items. In
this way, a kind of clustering hierarchy is generated, go-
ing from the one cluster level via intermediate levels, to
unclustered points.

If the structures are no longer fixed (j(s, t) � const), (1)
generally is no longer a Markov process on S . Two cases
are generic: (I) The structure j is strictly s-dependent and
(4) holds with j = j(s). Then, as in the case j = const, (4)
can still be approximated by a Markov process. (II) Learn-
ing, modifying the network structures, is used to provide
optimized clustering solutions. After learning, one partic-
ular structure j0 is chosen and cannot be replaced. Tech-
nically, this requires setting Π = 0 as long as the network
structure changes (i.e., in the transient phase). The rele-
vant steady state distribution is pj0,T , which can again be
approached by a Markov process. For models with a free
parameter T , the determination of the best T is another,
possibly nontrivial, issue of learning (see [1]). Obviously,
Π(t) in (2) helps to avoid an overestimation of the tran-
sients for the stationary distribution of (1) (e.g. Π(t) = 0
when j(t) � j0).

3. Hopfield clustering

In our approach, a clustering method is uniquely defined
by the cost function which depends on the architecture and
vice versa. From this function, by means of the Gibbs en-
semble, the probabilities of configurations emerge. To il-
lustrate this concept, we consider a (non-standard) stochas-
tic Hopfield network whose neurons can occupy either fir-
ing state si ∈ {−1, 1}. The underlying dynamics is sequen-
tial, i.e., at each update step t only one single, randomly
drawn neuron kt will be updated:

i � kt : si(t + 1) = si(t)

i = kt : si(t + 1) = sgn[tanh[hi(s(t))/T ] + ηi(t)]. (5)

ηi(t) is a independent random number (representing thresh-
old noise) uniformly drawn from the interval [−1, 1]. T
controls the noise impact. hi(s(t)) is the local field calcu-
lated after

hi(s(t)) =
n∑

j=1

Ji js j(t). (6)

The time-invariant structure of the network is described by

Ji j = J ji =
1

K̂
e
−d2

i j

2a2 , (7)
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Figure 1: A two-dimensional clustering problem.

if j is one of the k nearest neighbors of i, and Ji j = 0 other-
wise. K̂ is the average number of coupled neighbors and a
is the average distance between them.

(5) is biologically plausible, as only local information is
required. It specifies the process (1) maintaining the struc-
ture fixed (j = const). Consequently, (5) defines a Markov
process with the stationary Gibbs distribution (4), whose
cost function is the Ising model Hamiltonian

H(s) = −
1
2

n∑
i, j

Ji j si s j. (8)

Obviously, if two neurons enter the same state, the cost
function is significantly lowered, due to the larger Ji j.
Thus, such configurations are more frequently visited dur-
ing the process (5). To find natural clusters, we use the
G-criterion and scan the T -range for stable clusters. There
is, however, a notable disadvantage when using the update
rule (5). For practical values M � ∞, the system usu-
ally gets stuck in a basin of attraction of a local minimum
of H. This can make the detection of independent clusters
impossible, as in local minima neurons of different clusters
can be in the same firing state (which happens necessarily
for more than two clusters). To avoid trapping by minima,
the configuration should intermittently be reset to a random
configuration. This procedure corresponds to short sponta-
neous noise bursts in the network.

The clustering algorithm was tested on a two-
dimensional toy system (see Fig.1) with three clusters of
the same size (100). Fig.2 shows the identified clusters for
a fixed T -range. Three clusters can be recognized. The
background decays into singletons. The results are not very
sensitive to the choice of k (number of nearest neighbors).
However, for calculations with reasonable M, fluctuations
can occur (e.g, with as an extrem effect, merging of two
clusters), which complicates an automated cluster identifi-
cation.

4. Superparamagnetic clustering

For data analysis, local update rules, such as (5), are slow
and not particularly suitable for applications. Superparam-
agnetic clustering, introduced in [2], departs with the defi-
nition of the cost function H and uses a more efficient algo-
rithm to converge towards the Gibbs distribution (4). Each
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Figure 2: The size of the occurring clusters vs. T. The three (here
overlapping) clusters of size 100 decay for large T .

neuron can take m = 20 possible firing states. H is defined
similar to (8) as

H(s) =
1
2

n∑
i, j

Ji j(1 − δsi s j), (9)

where the Ji j are fixed and determined as in (7). For the cal-
culation of (2), a global spin flip algorithm, the Swendsen-
Wang algorithm, is used. For this algorithm, the first con-
figuration can be chosen at random. The update (1) is per-
formed as follows: First, coupled neurons (Ji j � 0) are

frozen together with probability P f
i, j = 1 − exp(− Ji j

T δsi s j ).
Next, SW clusters are identified. A SW cluster contains all
neurons that are connected via a path of frozen bonds. Fi-
nally, to all neurons of a SW cluster, an identical randomly
drawn firing value is assigned. This procedure is more effi-
cient and reliable than local updating, as local minima are
avoided (resulting in a reduced autocorrelation time).

0 1

Figure 3: An example of a two-dimensional nontrivial clustering
problem: different shapes (two triangular clusters (≈ 100/160)
and a ring cluster (≈ 600)) and differing densities (including back-
ground noise) render this problem a nontrivial one.

The results (see Fig. 4) obtained for the nontrivial toy
system of Fig.3, show three clearly distinguishable clus-
ters, where the T -stability of the different clusters depends
on their density. Thus, for the identification of clusters of
different densities, a global clustering resolution, as given
by T , is disadvantageous [1]. This can be remedied by op-
timizing T = Ti j locally, on the cluster level. In order to
maintain the principle (4), we will interpret this procedure
as a network structure optimization (learning) with effec-
tive synaptic weights Je f f

i j = Ji j/Ti j.

385



0.01 0.05

200

800

T

cluster
size

Figure 4: Size of detected clusters vs. temperature T. In the
marked phase, the three clusters occur simultaneously.

5. Clustering by cost optimization

Pairwise clustering is an optimization problem, where
the aim is to minimize the following (or a similar) cost
function

Hpc =
∑
ν≤k

⎛⎜⎜⎜⎜⎜⎜⎝|Cν|
∑
{i, j}∈Eνν

di j

2|Eνν|

⎞⎟⎟⎟⎟⎟⎟⎠ , (10)

where Eαβ = {{i, j}|xi ∈ Cα ∧ x j ∈ Cβ} and Cν denotes a
cluster. The cost minimum balances between the size of
the clusters and their compactness. (10) corresponds to a
cost function of an all-to-all network, where the structure j
depends on the firing configurations s, i.e., j = j(s):

Hpc(s) =
∑
{i, j}

Ji j(s)δsisj , (11)

with Ji j(s) = di j/(|si| − 1). |si| =
∑n

j=1 δsis j is the number
of neurons in the state si with si ∈ {1, 2, ..., k}. To achieve
the cost minimum mins Hpc(s), annealing techniques are
frequently used. Generally, cost optimization is a T → 0
process, i.e., the clusters are frozen groups of synchronized
neurons. Unlike in ferromagnetic models, T = 0 usually
does not lead to one single big cluster. Instead, the result
yields as many clusters as possible (confined by k). This
is achieved by avoiding configurations with synchronized
’dissimilar neurons’, by rendering them suboptimal in
terms of the cost function H.

K-means is a clustering approach that is based upon a
fixed number of clusters. In the network picture, k central
neurons are given, to which all other neuron are connected.
The central neurons have fixed, and distinct, firing states
(q1, ..., qk). The goal is to find the optimal firing configu-
ration and structure, so that the following cost function is
minimized:

Hkm(s) =
∑
i≤n

∑
ν≤k

Jiνδsiqν =
∑
{i,ν}

Jiν(s)δsiqν , (12)

where

Jiν = |xi − yν|
2 and yν =

∑
j

x j/|s j|δs jqν . (13)

The corresponding learning rule can be interpreted in terms
of (1) as a deterministic or a T = 0 process: First, each

neuron j adopts the firing state of the ’closest’ central neu-
ron (initially chosen by random assignment): s j = qi with
i = arg minν J jν. Then, the network structure is changed,
i.e., the Jiν are adapted according to (13). In ideal cases, the
repetition of the procedure quickly leads to the minimum.

6. Discussion

We have introduced a framework for the coherent de-
scription of clustering methods. In the framework, each
clustering method entrains its own specific neural network
architecture. During clustering, each data item is repre-
sented by a neuron and clusters are identified by groups
of preferentially synchronized neurons. The latter emerge
from a self-organized process, mediated by an architecture-
specific cost function over the firing configurations. The
costs determine the probability of a configuration in the
dynamical steady state situation. We have pointed out that
the Gibbs distribution is a natural choice for the stationary
distribution, where the cost function takes the role of the
Hamiltonian. As the stationary distribution fully character-
izes the clustering solution, an appropriate Markov process
will give rise to the formation of clusters. Two specific
families of methods have been discussed: (I) In the fer-
romagnetic methods (e.g., Hopfield, or superparamagnetic
clustering), coupled neurons intrinsically try to synchro-
nize. This tendency is opposed by the noise which comes
in the guise of the temperature T in the Gibbs distribution.
Noise renders the synchronization of two neurons the less
probable the weaker the coupling is. As a consequence,
groups of strongly coupled neurons form clusters of syn-
chronized neurons over a whole range of temperatures T .
Robust and unbiased clusters are the results. (II) Cost op-
timization methods (e.g., pairwise or K-means clustering)
are described as T → 0 border cases. Reasonable clus-
tering results require the network structure to depend on
the firing configurations. As the choice of the number of
possible firing states strongly influences the solution, these
methods are naturally more biased. Stochastic variants us-
ing T > 0 can also be interpreted as members of this class.
Other deterministic methods (linkage methods, e.g.) can be
included in this framework as T = 0 border cases.
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