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Abstract—In most realistic situations, the intensity of
input signals to a sensor encompasses many orders of mag-
nitude (in the case of acoustic signals: 1012). In order to
accommodate such a large dynamic range, the sensor is
required to operate nonlinearly. The sensor’s nonlinear-
ity is usually expected to imply severe signal distortion.
In biological sensor’s, however, nonlinearities are used to
perform processing of sensory information. In this con-
tribution, we demonstrate how the mammalian auditory
system performs computations by means of an arrange-
ment of coupled Hopf-type nonlinearities, which represent
cochlear outer hair cells. The emerging phenomenon of
two- (or multi-) tone suppression effectuates an increase
in the signal-to-noise ratio of the cochlear sensor and is a
prerequisite for the auditory system’s solution of the scene
segmentation problem.

1. Introduction

Future intelligent acoustic devices, as well as biologi-
cal auditory systems, are confronted with the problem of
auditory scene segmentation [1]: A mixture of incoming
acoustic stimuli must be decomposed into different sound
sources, and the information which is relevant for the task
to be performed must be extracted. Up to now, a general
solution to the auditory (as well as the visual) scene seg-
mentation problem has not been devised. However, path-
ways towards an at least partial solution can be found by
investigating the principles of auditory processing in biol-
ogy.

In the mammalian hearing organ, the fluid-filled cochlea,
sound-induced mechanical vibrations are transduced into
neural excitation patterns, which involves significant infor-
mation processing at the biophysical (pre-neuronal) level.
The spiral-shaped cochlea is divided into two parts by
the basilar membrane (BM). An incoming sound stimulus
gives rise to a traveling wave along the BM, whose expo-
nentially decreasing transversal stiffness leads to a wave
maximum at a frequeny-specific resonance point (charac-
teristic place). This place-frequency map (tonotopic map),
which has first been proposed by H.L.F. von Helmholtz in
1863 [2] and was experimentally verified by von Békésy
in 1928 [3], is the basis for the frequency selectivity of the
auditory system.

Later, measurements of primary auditory nerve excita-
tion [4] revealed a very sharp frequency selectivity that
could not be explained by the structural properties of the
cochlea alone, and a nonlinear growth of the responses was
observed. With the improvement of measurement tech-
niques, nonlinear BM vibrations could be measured [5]. In
1978, the discovery of otoacoustic emissions [6] (the phe-
nomenon that the hearing system is actually able to produce
sounds) reactivated a hypothesis originally brought forward
by Gold in 1948 [7], that the cochlea acts as a regenerative
active amplifier in order to compensate for viscous fric-
tion. This hypothesis was substantiated by the observation
that the outer hair cells (OHC), which reside on the BM,
amplify the BM movement by their ability to contract and
elongate (motility) [8]. For low sound intensities (less than
30 dB SPL), the OHC’s effectuate an enhancement of BM
vibration of up to 50 dB; with increasing sound level, this
amplification is reduced, which leads to a pronounced com-
pressive nonlinearity; for large sound levels (beyond 90 dB
SPL), the BM response is essentially passive and linear.
If the physiological condition of the experimental animal
deteriorates, or if cochlear damage has been induced by
acoustic trauma (hearing loss), amplification and compres-
sive nonlinearity are severely reduced.

The detection of OHC motility triggered efforts towards
a deeper understanding of the cochlear amplification mech-
anism. At present, its working principles are seen as fol-
lows: it is believed that a displacement of the BM leads to a
deflection of the OHC hair bundle (which protrudes into the
cochlear fluid). This causes the opening or closure of ion
channels in the bundle, which changes the cell’s transmem-
brane potential. Voltage sensitive proteins in the lateral
wall thus change their conformation and thereby change the
area of the cell’s lateral surface. As the cell volume must
stay constant, this results in an elongation or contraction of
the cell soma.

That the cochlea performs significant information pro-
cessing by means of the nonlinear amplification mecha-
nism becomes evident if the nonlinear interactions between
two tones are investigated. If two tones are applied simulta-
neously to the ear, two phenomena arise: suppression and
the generation of combination tones. In the case of sup-
pression, the BM response to a single tone of frequency f1

is reduced (suppressed) in the presence of a second tone of
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frequency f2. Evidently, the suppressive effect of the f1-
and f2-tones is mutual. Suppression leads to a selective en-
hancement of signal features, which is a precondition for
successful auditory scene analysis on later stages of audi-
tory processing.

Combination tones (distortion products) with frequen-
cies fCT = n f1 + m f2 (n,m ∈ Z) are generated by the non-
linear interaction between the two frequency components.
Due to the structural properties of the cochlea, only the fre-
quencies 2 f1− f2 and (to a lesser extent) f2− f1 ( f2 > f1) are
able to propagate to their respective characteristic places.

In this contribution, we give a detailed explanation for
the observed nonlinear phenomena, based on nonlinear dy-
namical systems theory. Specifically, the cochlear ampli-
fication mechanism is described in terms of oscillators un-
dergoing a Hopf bifurcation (Hopf oscillators). The exper-
imental observations can then be explained by a variation
of the effective Hopf bifurcation parameter in the presence
of a second tone.

2. The Hopf Cochlea Model

Recently, it has been shown [9] that the basic character-
istics of hearing can be explained from the mathematical
properties of the driven Hopf oscillator,

ż = (µ + iω0)z − |z|2z + F(t), z(t) ∈ C, (1)

where ω0 is the natural frequency of the oscillation, µ ∈ R
denotes the bifurcation parameter, and F(t) = Feiωt is an
external periodic forcing with frequency ω. In the absence
of external forcing, (1) describes the generic differential
equation displaying a Hopf bifurcation. For an input F(t),
z(t) can be considered as the amplified signal. The steady-
state solution for periodic forcings is obtained by the ansatz
z(t) = Reiωt+iφ, which leads to a cubic equation in R2,

F2 = R6 − 2µR4 + [µ2 + (ω − ω0)2]R2. (2)

Assuming ω = ω0 and µ < 0, for F � |µ|3/2, the response
is linear, R ≈ −F/µ. If F � |µ|3/2, the R6-term becomes
dominant, and the compressive nonlinear regime is entered,
R ≈ F1/3, with the amplification gain decreasing like F−2/3.
For ω � ωc, R ≈ F/

√
µ2 + (ω − ωc)2, and the response is

always linear. If µ > 0, stable limit cycles emerge, which
explains the generation of otoacoustic emissions.

The fact that the properties of (2) explain the observed
characteristics of hearing motivated the development of
a Hopf-type cochlea model (for details see [10]). From
energy-balance arguments, the cochlea differential equa-
tion,

∂e(x, ω)
∂x

= −e(x, ω)
v(x, ω)

[
∂v(x, ω)
∂x

+ d(x, ω)

]
+

a(x, e, ω)
v(x, ω)

, (3)

was derived. e(x, ω) denotes the one-dimensional energy
density of the cochlear fluid, v(x, ω) is the group veloc-
ity of the BM traveling wave, d(x, ω) encompasses viscous

losses, and a(·) denotes the nonlinear active amplification
by OHC. Based on cochlear biophysics (see [10])

a(e, x, ω) = L(R(
√
σe(x, ω)))2, (4)

where L and σ are constants, and R(·) is determined by
(2). The connection between the cochlea model and exper-
imentally measured BM response A is given by the relation
A(x, ω) = (2e(x, ω)/E(x))1/2 (E(x) = E0 exp(−αx) denotes
the BM stiffness). The response of the cochlea model dis-
plays remarkable coincidence with experimental measure-
ments [10].

3. Nonlinear Cochlear Signal Processing

In the presence of a tone consisting of two frequencies,
the driving term of (1) reads

F(t) = F1eiω1t+iψ2 + F2eiω2t+iψ1 + FCT eiωCT t+iψCT , (5)

where we allow for phases ψk of the two frequency com-
ponents, Fk > 0, and ωk = 2π fk, k = {1, 2}. When CT
responses at frequency ωCT = 2ω1 − ω2 (ω2 > ω1) are
generated at a certain site on the BM, these constitute a
component of the input to Hopf oscillators at neighboring
BM locations. For the Hopf cochlea model, the last term in
(5) must therefore be considered.

The steady-state solution of (1) is obtained from the
Fourier series ansatz

z(t) = R1eiω1t+iφ1 + R2eiω2t+iφ2 (6)

+ RCT eiωCT t+iφCT +
∑

j

R je
iω j t+iφ j .

The third term denotes the propagating combination tone
with frequency ωCT = 2ω1 − ω2 (ω2 > ω1), and the sum
includes all higer-order contributions ω j = nω1 + mω2,
{n,m} ∈ Z2 \ {2,−1}.

After some calculations, the response to frequencies ω1,
ω2 is obtained as

F2
k = R6

k − 2µe f f ,kR
4
k + [µ2

e f f ,k + (ωk − ω0)2]R2
k , (7)

where k = {1, 2} and j � k. These equations can be inter-
preted as single Hopf equations with effective bifurcation
parameters µe f f ,k = µ − 2R2

j (cf. Eq. (2) and note that
µ < 0). Since the small-signal gain is given by 1/|µe f f |,
it becomes evident that the suppressive effect in the pres-
ence of a second tone is captured by a shift of the effective
bifurcation parameter away from the bifurcation point.

The response at ωCT is obtained in the same way,

F2
CT + R4

1R2
2 − 2R2

1R2FCT cos(2φ1 − φ2 + ψCT )

= R6
CT − 2µe f f ,CT R4

CT + [µ2
e f f ,CT + (ωCT − ω0)2]R2

CT . (8)

If comparing (8) with (7), three points attract our attention.
First, we note from the emergence of an effective bifurca-
tion parameter µe f f ,CT = µ − 2(R2

1 + R2
2), that suppression
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Figure 1: Two-tone suppression: a) Model response: sup-
pressor intensity increases from 10 dB to 110 dB in steps
of 10 dB. The 10, 20, and 30 dB lines coincide. b) Experi-
mental measurements [11].

plays a crucial role in CT generation. Secondly, the term
R4

1R2
2 expresses CT generation in the absence of external

driving, FCT . From the discussion in Sec. 2, it is seen that
the CT response is given by RCT ≈ R2

1R2/µ, if R2
1R2 < |µ|3/2

(assuming ωCT = ω0). If R2 is kept fixed and R1 is in-
creased, we thus assume a 2 dB/dB increase of RCT .

As a third point, we observe that the presence of an exter-
nal driving FCT at frequency ωCT not only gives rise to the
term F2

CT . In addition, a phase-dependent term is induced,
where φk (k = 1, 2) denote the phase differences between
Rk and the driving force,

φk = arctan
ωk − ω0

µ − Rk(R2
k − 2R2

j)
− ψCT , j � k. (9)

For a single Hopf oscillator, the CT response is easily com-
puted from (8) and (9). In the cochlea model, however,
the phase ψCT is determined by the cochlear hydrodynamic
wave. The computation of the cos-term in (8) thus becomes
difficult, but fortunately, its contribution to CT generation
can be neglected for the following arguments. Firstly, if
f1 and f2 are not too close, either FCT or R2

1R2 dominate
on the left hand side of (8), so that the cos-term always
remains small. This has been verified by numerical simu-
lations for the frequencies used. Secondly, the interaction
with the hydrodynamic wave causes rapid changes of ψCT

along the BM, so that the contributions by the phases are
effectively averaged out.

The Hopf model response for a two-frequeny tone is ob-
tained by resolving a system of three differential equations
of the form (3). This provides the energy densities ek and
eCT . As Rk and RCT must be substituted in (4), these equa-
tions are coupled by Eqs. (7) and (8).

3.1. Two-Tone Suppression

In two-tone suppression experiments, the response to
one tone (the test tone) is measured in the presence of
a suppressor tone (indexing by t and s). The test-
tone input-output function obtained by the Hopf cochlea
model, determined for increasing suppressor intensity,
shows nearly perfect agreement with experimental mea-
surements (Fig. 1). In this representation, the BM response

at characteristic place (the location of maximum BM re-
sponse) is plotted as a function of sound intensity. For sup-
pressor levels Is below 40 dB (top curve in Fig. 1) we rec-
ognize the strong compressive nonlinearity which is char-
acteristic for the single-frequency cochlear response. For
Is � 40 dB (dashed line in Fig. 1a), the small-signal gain of
the test tone becomes significantly reduced, with constant
separations between the curves. If Is > 70 dB (dashed-
dotted line), these are reduced by a factor of about 1/3.

The Hopf cochlea model provides an explanation for
these observations (see also [12]). Since the small-signal
response of the test tone is given by Rt = Ft/|µe f f ,t|, and
µe f f ,t = µ − 2R2

s , we conclude that suppressive effects
become appreciable if µe f f ,t deviates significantly from µ,
which is the case if Fs ∼ Rs �

√|µ|. The spacing between
the curves reflects the compressive nonlinearity of the sup-
pressor response, Rs. For Is < 70 dB, Rt ∼ Ft/R2

s ∼ Ft/It,
which explains the constant spacings between the curves in
Fig. 1. If the suppressor enters the compressive nonlinear
regime, R2

s ∼ F2/3
s ∼ I1/3

s holds, which leads to a reduction
of the spacing by 1/3. It is remarkable that the same effect
is observed in the experiment.

In Fig. 2, the BM response of the test tone is displayed as
a function of suppressor intensity, where model and exper-
iment again show remarkable coincidence. For suppressor
frequencies larger than the test tone frequency, the nonlin-
ear compressive regime leads to a more moderate depen-
dence of the test tone response on the suppressor intensity.

Figure 2: Two-tone suppression as a function of suppressor
intensity: a) Model (ωt/2π = 1 kHz). b) experimental mea-
surements [13] (ωt/2π = 34 kHz), where the labels indicate
the suppression frequencies.

3.2. Combination Tones

CT measurements are performed in a variety of experi-
mental settings [14]. We restrict our analysis to the situ-
ation where the CT response is measured as a function of
the intensity of the f1-component, while the level of the
f2-component is kept fixed (Fig. 3). We observe a close
agreement of the model results with the experimental mea-
surements.

An explanation of Fig. 3 is again provided by the Hopf
cochlea model. At the increasing branches of the curves,
the slope is exactly 2 dB/dB, as was predicted from Eq.
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Figure 3: Combination tone generation: BM response at
characteristic place for a tone with frequency f = 2 f1 − f2,
as a functon of f1-intensity. a) Model response (curves for
f2 = 60, 70, 80 dB; f1 = 930 Hz, f2 = 1000 Hz, f2/ f1 =
1.05). b) Experimental measurements [14] ( f2/ f1 = 1.1).

(8). The role of suppression is twofold: For low f1-
levels, suppression of the CT stems exclusively from the f2-
component. This explains the decrease of the CT response
upon increase of the f2-level (while f1-intensity remains
fixed), which is observed when CT responses at different
curves are read off for fixed f1-intensity. For the same rea-
son, the 2 dB/dB-slope remains unaffected: From Eq. (8)
follows RCT ≈ R2R2

1/µe f f ,CT ∼ R2
1, as µe f f ,CT is only a

function of R2 for small f1-intensities. Since µe f f ,CT =

µ − 2(R2
1 + R2

2), the contribution of the f1-component to
suppression becomes significant if R1 � R2, which is the
case when the intensity of the f1-component exceeds the
f2-level. This explains the decrease of the CT response for
large f1-intensities.

4. Conclusion

In the preceeding section we have demonstrated that the
Hopf cochlea model provides an successful description of
cochlear nonlinear phenomena. The role of suppression in
cochlear information processing consists in the reduction
of the response to small-amplitude signals (which can be
considered as noise). This leads to a pattern-sharpening ef-
fect, analog to the increase in resolution of neural receptive
fields, which is achieved by lateral or surround inhibition.
The role of combination tones is less clear. Possibly, they
may help in signal identification (scene analysis) if several
signals of comparable magnitude are present; if the sig-
nal intensities differ, the combination tone is readily sup-
pressed. CT generation sometimes plays a role in music –
the phenomenon has been described for the first time by the
violinist Tartini in 1714,

For the design of intelligent acoustic devices, which
perform signal identification and scene analysis tasks, a
profound understanding of the nonlinear phenomena in
mammalian hearing may provide helpful. For example,
if a speech recognition system is endowed with a simple
cochlea model as a front end, its performance increases sig-
nificantly [15]. We therefore expect that the Hopf approach
to cochlear modeling will be of great benefit for develop-
ping sound-processing devices.
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