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Abstract�Echographic equipments generate im-
ages from almost any kind of soft tissues and allow
for diagnosis methods that are receiving increasing at-
tention in modern medical procedures for their non in-
vasive features. For such an instrumentation, real-time
processing becomes every days more important; thus,
techniques for the elimination of redundancies, bot-
tlenecks and recalibration of con�guration parameters
for performance optimization are mandatory. In this
work we highlight the main issues for real-time per-
formances; in addition, we describe a new optimized
method with a threshold detection algorithm. Finally,
some results from in-vivo and in-vitro analysis are dis-
cussed.

1. Introduction

Echographic signals result from the interaction be-
tween the pressure wave generated by the transducer
and the tissue structure. Let h(t) be the ultrasound
pulse shape and s(t) be the scatter distribution. Under
the assumptions of weak scattering, narrow ultrasound
beam and linear propagation, the echo signal y(t) can
be expressed [1] as

y(t) = s(t) ∗ h(t) = c(t) + d(t) =
Nc∑

n=1

cn(t− θn) ∗ h(t) +
Nd∑
n=1

dn(t− τn) ∗ h(t) (1)

where c(t) derives from the interaction of the pulse
with the resolvable scatterers, d(t) with the randomly
located di�use scatterers, while Nc and Nd are the
number of coherent and di�use scatterers, θn and τn

their time delays to the receiver, and cn and dn their
relative strengths. As sampling does not alter super-
position, one gets:

y(n) = c(n) + d(n) (2)

TheWold-decomposition theorem can split y(n) into
its two components [2]. The di�use component d(n) is
well modeled by an autoregressive (AR) stochastic pro-
cess. The coherent component c(n) is approximated
by a summation of Gaussian modulated sinusoid: the
resolvable scattering structure can be viewed as a sum-
mation of delta functions of random strength located
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Figure 1: CWTD algorithm diagram

at the resolvable scatterers' location, while the echo
pulse can be approximated by a Gaussian modulated
sinusoid.

2. Georgiou-Cohen algorithm

As c(t) and d(t) overlap in time and frequency, to
separate the two components and extract structural
parameters one can adopt the algorithm proposed by
Georgiou and Cohen [3] based on the time-frequency
properties of the Continuous Wavelet Transform De-
composition (CWTD) (see Fig.1). This algorithm �rst
checks the existence of coherent scatterers testing the
hypothesis of Rayleigh scattering by means of the non-
parametric Kolmogorov-Smirnov (K-S) test for color
�eld [4]: if this does not hold, i.e. a coherent part
exists, the echo signal is decomposed into its two com-
ponents. After decomposition, the CWTD algorithm
estimates the parameters needed to classify the tissue.

2.1. Coherent component detection
The K-S test statistic assumes random samples.

Since the echo signal is correlated, data �rst need to be
decolored: this can be achieved by modeling the sig-
nal as an AR(p) process, using the fast Burg algorithm
[5] to calculate its coe�cients, and then extracting the
innovation sequence. The K-S statistic D is then cal-
culated by:

D = sup
−∞<w<∞

|P (w)−G(w)| (3)
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where G(w) is the supposed Gaussian distribution and
P (w) is the empirical cumulative distribution function
(ECDF) of w(n), de�ned as:

w(n) = y(n)−
p∑

k=1

aky(n− k) (4)

where y(n) is the input signal, p is the model order
and ak are the model coe�cients.

Burg algorithm cannot be executed on streaming
data and it is somewhat burdensome in a real-time
environment because of the high number of multiplica-
tion and division needed. For the echo signal analysis
the Levinson algorithm [5] is a valid alternative.

The extraction of the innovation sequence is not an
issue, since it is done through FIR �ltering, while sta-
tistical testing requires a great use of resources. As
the K-S test is based on the ECDF, an histogram esti-
mation routine must be used. These routines usually
involve sorting steps thus an high number of compar-
isons: this means that streaming data can be processed
only through bu�ering.

2.2. Wavelet based decomposition
In presence of a coherent component, the wavelet

power �uctuations over J di�erent scales are exam-
ined using the Scale-Average wavelet Power spectrum
(SAP),

W
2

=
1
J

J∑

j=1

|W (sj , n)|2 (5)

where W (sj , n) are the wavelet coe�cients of y(n) at
the j-th scale. The detection and time localization of
the coherent scatterers are performed by thresholding
the SAP with:

θSAP = µω + θσω (6)

where µω is the SAP mean value, σω is its standard
deviation and θ a tuning parameter.

The CWTD algorithm in [3] uses the Morlet wavelet,
so very long Wavelet �lters and an high number of non
trivial multiplication are expected. Since it is impor-
tant to consider all signal bandwidth in the SAP calcu-
lation, a certain number of CWT must be calculated
before �nal summation, increasing the total number
of multiplication. Finally, to calculate standard devi-
ation a square root routine is executed. Thresholding
is a critical phase in the characterization algorithm, so
the square root result should have the same accuracy
of the SAP mean value: this could require iterative
algorithms with lookup tables.

2.3. Component features extraction
Even if CWTD algorithm in Fig.1 estimates three

di�erent features for each component, it was reported
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Figure 2: Optimized CWTD algorithm diagram for
real-time execution

in [3] that only two of them can be fruitfully used in
a classi�cation process. In particular, the mean en-
ergy En of the coherent scatterers is most successful
in discriminating between normal, �brocystic, cancer
and �broadenoma tissues, while the residual error vari-
ance σ2 of the di�use scatterers is able to di�erentiate
between malignant and benignant tissues, such as nor-
mal, �brocystic and �broadenoma tissues.

3. Real-time classi�cation algorithm

The CWTD algorithm can be reworked to achieve
real-time processing capabilities. First of all, if we hy-
pothesize that the input signal always contains a co-
herent and a di�use component, the detection stage of
the former can be eliminated. When this hypothesis is
not veri�ed, the decomposition block must generate a
zero value coherent signal by using a �xed threshold,
which eliminates the necessity of the square root cal-
culation too. The resulting modi�ed algorithm for En

and σ2 calculation is shown in Fig.2.

3.1. Components separation
We used the Wavelet Transform (WT) to separate

the frequency contents while keeping time informa-
tion. Since this transform preserve energy, a thresh-
olding operation to eliminate coe�cients of the di�use
component is feasible. A good estimate of c(t) is re-
constructed by inverse transformation and d(t) is ex-
tracted by subtraction from the original signal.

Viewing the WT as a �lter stage, the central fre-
quency and the bandwidth can be set freely using a
single Wavelet Packet Transform (WPT) [6], while the
discrete realization of the CWT needs multiple anal-
ysis. Moreover, the structure of the WPT allows for
the change of both central frequency and bandwidth at
runtime while the �lter coe�cients remains �xed. We
propose to replace the multiple CWT and the SAP
calculation with a single WPT followed by an energy
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estimation.
Since we aim to cover all the signal bandwidth while

maintaining a low computational cost, Haar wavelet
which avoids multiplication seems particularly useful:
only additions and shifts are used to �lter the signal
preserving accuracy.

Thresholding has proven most successful when
based on mean energy over a �xed length set of sam-
ples: whenever energy is lower than threshold, the cor-
responding wavelet packet coe�cients are set to zero.
Optimization of this process reduced the operation to
a single multiplication and two algebraic sums, while
keeping real-time processing capabilities. Finally, the
Inverse Wavelet Packet Transform (IWPT) allows us
for the reconstruction of the coherent component with
low computational cost and high e�ciency.

3.2. Components analysis
The residual error variance is estimated from the

innovation sequence of the AR(p) di�use component
model. The use of Levinson algorithm reduces the
computational cost of whitening coe�cient estima-
tion, but it requires an estimation of the input sig-
nal autocorrelation function (ACF). This is usually
performed through FFT-based algorithms; these tech-
niques, however, are time and resource consuming
in a real-time environment, requiring max{N,K} ×
log2(max{N, K}) multiplication to estimate the �rst
K terms of the ACF from a sequence of N samples.

A more e�cient, real-time capable algorithm can be
derived taking care of the time dependence de�nition
of ACF: this algorithm uses only K multiplications to
extract the �rst K terms of the ACF from a sequence
of N samples.

Since Levinson algorithm cannot process streaming
data, bu�ering is required. Thus, after ACF estima-
tion, input streaming data are delayed with a shift-
register with Np memory locations while whitening
coe�cients are estimated. The ACF coe�cients are
sampled each Np samples and then used to estimate
the new set of whitening coe�cients ak applying the
Levinson algorithm. The value of Np must be set ac-
cordingly to the time needed to estimate the new co-
e�cients.

In order to avoid unwanted overwriting during up-
dating, the coe�cients are bu�ered and then used in a
the FIR �lter to extract the white innovation sequence.
Additionally, only one multiplication and a reduced
number of algebraic sums are necessary to obtain an
unbiased variance estimation

σ2 =
N∑

i=1

(xi − x)2

N − 1
(7)

Finally, estimation of the mean energy En of the coher-
ent scatterers is quite simple, as the mean operator is
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Figure 3: Statistical analysis for echo samples: nor-
malized number of over-threshold samples (top) and
variance of over-threshold samples (bottom) versus
threshold log2

unbiased. We found that En can be achieved through
one multiplication and two algebraic sums only.

4. Threshold detection algorithm

The threshold value must be �nely tuned and ex-
tracted o�-line: as we use a statistical approach, a
great number of samples obtained from echographic
videos is required.

First, we extract the CDF of the samples mean en-
ergy for each acquisition and we calculate the number
of samples over a given threshold versus the thresh-
old itself (Fig.3a). These functions have a character-
istic behavior; apart the zones at the ends, the slope
in the intermediate region depends on the strength of
the coherent component compared to the di�use one:
when coherent component is absent, low power sam-
ples are predominant and viceversa. This moves the
slope from left to right. The statistical distribution of
these functions (Fig.3b) shows a single maximum that
corresponds to a good thresholding value for the data
set.

5. Results

The proposed optimized algorithm has been applied
to both in-vivo and in-vitro echo images. Figg.4-5
show some cases acquired with a LA13 transducer with
a central frequency of 7.5MHz and a bandwidth of
5MHz at -6 dB.

Resolvable scatterers images (Figg.4-5b) show an
improvement in contrast and tissue separation, in par-
ticular for in-vitro echo images. Thus, the achieved
images can be useful in discriminating between nor-
mal, �brocystic, cancer and �broadenoma tissues.

Di�use error variance images (Figg.4-5c) show an
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Figure 4: In-vitro prostatic gland a�ected by carci-
noma; from left to right a) originale image, b) resolv-
able scatterer energy and c) di�use error variance

improvement in contrast too, even if tissue separation
is not as good as in the previous case. However, benig-
nant versus malignant tissue classi�cation is possible
by inspecting these images.

6. Conclusions

In this work we have presented an optimized form
for the CWTD algorithm for tissue classi�cation suit-
able for real-time data processing. We showed that
a good value for energy thresholding can be obtained
from a statistical analysis of echographic video. The
proposed algorithm was tested on real ultrasound im-
ages and satisfactory visual tissue discrimination was
demonstrated.
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Figure 5: In-vivo breast with sebaceous cyst (top) and
adenocarcinoma (bottom); from left to right a) origi-
nale image, b) resolvable scatterer energy and c) dif-
fuse error variance
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