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Abstract– Memory retrieval in neural networks has 
traditionally been described by dynamical systems with 
discrete attractors. Evidence raised by recent 
neurophysiological findings of graded persistent activity, 
however, suggests that information retrieval in the brain is 
more likely to be described by dynamical systems with 
continuous attractors. We propose a neural-network system 
that has continuous attractors with respect to the network-
activation pattern. In this system, the attractor pattern 
continuously depends upon the initial pattern; it also 
reflects learned patterns. The usefulness of information 
encoded by the attractor pattern is demonstrated by 
applying our system to key extraction from a document. 
Thus, our model presents a novel information-retrieval 
design inspired by neuroscience. 
 
1. Introduction 

 
It is traditionally considered that storage of short-term 

memory in the brain is formed by sustained reverberatory 
activation of an ensemble of neurons. Such activation can 
emerge as an attractor of a multi-stable dynamical system 
describing a neural network in which multiple distributed 
patterns are embedded [1, 2].  

In the multi-stable dynamical system, for a given 
pattern represented by an initial state, one of the 
embedded patterns, which is the nearest to it, is retrieved. 
The state space is divided into multiple attractor basins; 
the attractor on which the state point settles depends upon 
the basin to which it initially belongs (Fig. 1a).  

However, recent neurophysiological findings of graded 
persistent activity challenge to this traditional paradigm. 
The firing rate of neurons recorded from the prefrontal 
cortex of the monkey performing vibrotactile 

discrimination task varied, during the delay period 
between the base and comparison stimuli, as a monotonic 
function of the base stimulus frequency [3]. The firing rate 
of neurons in the oculomotor system of the goldfish 
during fixation was associated with the history of 
spontaneous saccadic steps [4]. These phenomena cannot 
be described simply by multi-stable dynamical systems 
with discrete attractors. They are more likely to be 
described by dynamical systems with attractors that 
continuously depend upon the initial state (Fig. 1b). (For 
overall survey of graded persistent activity, see [5]).  

The purpose of this study is to infer new information-
processing design from supposed neural mechanisms of 
graded persistent activities. Several attempts have already 
been made to build models for neural mechanisms that 
generate continuous attractors [6, 7]. However, their 
discussion is confined to the continuity with respect to 
scalar quantities such as the firing rate of individual cells. 
Nevertheless, rich information processing should exploit 
more complex quantities such as the network-activation 
pattern represented by a vector. Here we propose a model 
for neural mechanisms that generate continuous attractors 
with respect to the network-activation pattern. To 
demonstrate the functional significance of this process and 
its technological implication, our system is applied to a 
typical document-processing task, keyword extraction 
from a document. 
 
2. Model 
 
2.1. Previous models 

 
Several models for neural mechanisms that can 

generate continuous attractors have already been 
examined in previous works. In the mechanisms proposed 
by Seung et al. [6], the parameter values are finely tuned 
so that friction vanishes along a certain line in the state 
space. This line constitutes continuous attractors (line 
attractors). However, continuous attractors attained by 
their mechanisms are marginally stable and vulnerable to 
slight change in parameter values.  
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Fig. 1: a, discrete attractors. b, continuous attractor. 

Koulakov et al. [7] proposed mechanisms that ensured 
stability of continuous attractors. They considered a 
recurrent network consisting of bistable neurons. Each 
neuron is either in the ‘off’ state or in the ‘on’ state. In the 
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‘off’ state, the firing rate is low; in the ‘on’ state, the firing 
rate increases with the input from presynaptic neurons. In 
this model, the synaptic weights are uniform everywhere 
in the network. Nevertheless, if different parameter values 
are properly associated with each neuron, they can move 
to the ‘on’ state not simultaneously but one by one in a 
fixed order. Owing to the neuronal bistability, each state 
of the network appearing in this series is stable. If the 
number of neurons constituting the network is sufficiently 
large, continuous attractors can approximate this series of 
stable states. Therefore, the firing rate of each neuron or 
the network activity defined by the average firing rate 
across neurons is continuously associated with the number 
of neurons in the ‘on’ state.  

In the above mechanisms, discussion is focussed on 
continuous attractors with respect to scalar quantities such 
as the firing rate of individual cells. This is because their 
main purpose is to account for experimental observation 
of graded persistent activity. In usual neurophysiological 
experiment, the firing rate of a single cell, which is 
represented by a scalar quantity, is examined.  

However, rich information processing should exploit 
more complex quantities such as vector quantities. It is 
highly probable that, although not observed by present 
experimental techniques, the continuity with respect to the 
activation pattern of an ensemble of neurons, which can 
be represented by a vector, underlies observed graded 
persistent activity.   
 
2.2. Our model 

 
In this short article, we provide an outline description 

of our model. A detailed description of the model is given 
in [8]. Following Koulakov et al. [7], we consider a 
network of N  bistable neurons. For minimal modelling 
of the neuronal bistability, each neuron is described by a 
two-spin Ising system [9]. The strength of connection 
between neuron i  and neuron  is defined by the 
covariance-learning rule [10]: 
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The network-activation pattern is represented by a 
vector S
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. The i -th component  represents the state of 

neuron : If the neuron is in the active state and 
transmitting signals to postsynaptic neurons, 
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otherwise, . The activity of neuron i  itself is 
defined by the input from presynaptic neurons [7]:  
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 To examine the continuity with respect to the network-

activation pattern, we calculate the correlation between 
the current pattern S

r
and an initial pattern 
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3. Results 

 
3.1. Dynamical properties of our model 

 
First, we confirm that our model can produce the 

continuity of attractors with respect to the vector 
properties. For simplicity, we consider a simple network 
in which only a single pattern ξ

r
 is embedded: 
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 was calculated by computer simulation. The 

results obtained show that ( ))(iniS,SC
rr

 continuously 

depends on S )(ini
r

 in the attractor state (Fig. 2a). This 
means that the attractor pattern reflects information of the 
initial pattern in a graded manner. Thus, our model does 
generate continuous attractors.  

We also examined the time course of the correlation 
between S

r
 and ξ

r
:  
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The ( )ξ,SC  increases with time and then saturates (Fig. 
2b). This means that attractor states reflect information of 
the embedded pattern. However, unlike in the case of the 
original Hopfield model [1], the attractor pattern is not the 
embedded pattern itself. Thus, our model presents a novel 
design to retrieve information in a graded manner from a 
neural network system.  
 
3.2. Application to a keyword-extraction task 

 
To demonstrate the usefulness of information encoded 

by the attractor state thus retrieved, we next apply our 
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Fig. 2: a, time courses of the correlation between the network state S

v
 and the initial pattern S )ini(v . b, time course of the correlation between the

network state and the embedded pattern 
v

.  ξ

system to keyword extraction from a document. As an 
instance, Medline 1033, a data set consisting of 1033 
medical paper abstracts (available at [11]), was used as a 
document corpus. 

Each document in this corpus is represented by a vector 
in the space spanned by N  terms; i.e., for the p -th 

document,  with  being the 
relative importance of term i  in the 
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p -th document. 

Autistic reactions in early childhood: Differential
diagnostic considerations  
The term "autism" is frequently used today in the
differential diagnosis of the severe emotional
disturbances of early childhood. However, to label a
child as "autistic" presents some formidable
problems with regard to definition of the term, the
specific etiological-diagnostic implications, and
treatment considerations for any given child so
designated.  The purpose of this paper is to briefly
review some of the historical psychiatric background
of the term "autism", its more recent ramifications,
and our clinical experiences in this field. 

 

Box 1: Full text of No 808 in Medline1033

Term Activity 
emotion 26.87 

child 25.93 
autist 22.27 
*ment 21.56 

*behavior 21.50 
*disturb 20.67 
autism 20.31 
*social 19.22 
psych 18.40 

*mutual 17.23 

TABLE 2: HIGH ACTIVATED TERMS 
BY OUR SYSTEM. TERMS WITH 
ASTERISKS (*) ARE ABSENT IN THE 
DOCUMENT NO. 808. 

Term TFIDF
autism 8.91 
histor 8.43 
autist 8.25 
today 8.01 
term 7.89 

diagnost 7.68 
background 7.01 

child 6.74 
implic 6.21 
brief 5.93 

TABLE 1: HIGH SCORED 
TERMS BY TFIDF 

General relation between terms was acquired by the 
covariance-learning rule through all the documents in the 
corpus; i.e., the relation between term i  and term  is 
given by T  defined by the equation (1).  

j

ij

For a given document, set its vector representation as 
an initial state of the network-activation pattern. Then, 
update the network-activation pattern according to the 
dynamics of our model. The obtained attractor pattern will 
be associated with specific features of the document 
because it continuously depends on the initial pattern. 
Furthermore, it will also reflect general relation between 
terms stored in the network. Therefore, the attractor 
pattern is considered to represent appropriate keywords 

extracted from the document. The results of keyword 
extraction by our system were compared with those by 
TFIDF (term frequency inverse document frequency), an 
ordinary keyword extraction method [12]. 

Typical results obtained for No. 808 document (Box 1) 
are shown in Table 1 and Table 2, where top ten high-
scored terms extracted by TFIDF (Table 1) and by our 
system (Table 2) are listed. Comparison between them 
indicates that our model can extract keywords that 
appropriately represent the underlying meaning of the 
document. The terms that are closely relevant to the 
meaning of document No.808 but do not appear in this 
document or are lower rated by TFIDF, for example, 
“emotion”, “ment (mental)” or “behavior”, are extracted 
or higher rated by our system (Table 2). The terns that are 
extracted by TFIDF but have little relevance to the 
meaning of the document, such as “history”,  “today” or 
“term”, are removed.  

It might be interesting to visualize the activity pattern 
( ( )NIII ,,1 L
r
= , see the equation (2)) of the attractor 

state (Fig. 3) [13]. Terms that are reciprocally activating 
each other tend to exhibit higher activity.  
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Fig. 3: The relation of terms in the attractor state: Each value in brackets indicates the activity (calculated by the equation (2)).  
This figure was created with Pajek, which is free software for analyzing and visualizing large networks (available at [13]).  

 
4. Discussion 
 

We have inferred a novel information-retrieval design 
based on a neural-network system with continuous 
attractors from neurphysiological findings of graded 
persistent activity. For each query encoded by the initial 
state of the network-activation pattern, our system can 
retrieve information encoded by the attractor state in a 
graded manner. The process might be useful for keyword 
extraction from a document and other document 
processing tasks. 

Nevertheless, there is still room for improvement. In 
the present system, the output from the neuron i  is binary 
( S  or , see the equation (2)). To make it possible 
to deal with more detailed information, the system should 
be modified so that the output is represented by graded 
values. Our preliminary study suggests that this can be 
achieved by the use of supposed cellular mechanisms to 
account for recent experimental evidence indicating that 
graded persistent activity is formed at a single-cell level 
[14, 15].  

1=i 0
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