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Abstract— The problem of aggregating different stochastic
process into a unique one that must be characterized based on
the statistical knowledge of its components is a key point in the
modeling of many complex phenomena such as the merging of
traffic flows at network nodes.

Depending on the physical intuition on the interaction between
the processes, many different aggregation policies can be devised,
from averaging to taking the maximum in each time slot.

We here give a set of axioms defining a general aggregation
operator and, based on some advanced results of functional anal-
ysis, we investigate how the decay of correlation of the original
processes affect the decay of correlation (and thus possibly the
self-similar features) of the aggregated process.

1. Introduction

This work is a generalization of [1] where the problem of char-
acterizing the correlation profile of aggregated traffic fluxes is ad-
dressed.

In that work it is assumed that the traffic is slotted and that a
slot can be either full or empty. Moreover, it is assumed that the
merging between fluxes is performed by taking the � � � of the
slot states.

We here consider a more general traffic model in which each
slot can be partially filled with data. This immediately poses the
problem of how data coming from different sources interact at a
common node. It is not certainly sensible to assume that a simple� � � of the slot fill levels is the one and only possible model for
such an interaction.

In fact, the simultaneous presence of data on more than one
input port is likely to result in an output traffic that is larger than
each of the incoming loads, up to the complete saturation of the
slot capacity.

The key point of this paper is to leave the description of the
aggregation mechanism free, specifying only that it must possess
some common-sense properties listed in an axiomatic form. Start-
ing from these axioms, and resorting to some recent results on the
structure of this kind of connectives, we obtain that there is a one-
to-one correspondence between the possible aggregations and the
continuous non-decreasing real functions on the interval 	 
 � � � .

This intrinsic structure allow us to apply some elementary sta-
tistical analysis and derive that the covariance decay of the output
flux is determined by the slowest covariance decay among the
input processes, independently of the actual mechanism used to
merge them.

2. Process and Aggregation Models

We will deal with discrete-time processes that, at each integer
time steps � , associate a random variable � � assuming values in

	 
 � � � .
This structure fits, for example, the need of modeling a slotted

link whose slots can be filled by traffic units to different levels.
An empty slot corresponding to a 0, a completely saturated slot
corresponding to a 1.

When traffic fluxes come to a node they may be aggregated into
a unique flux that can also be modeled by a slotted link.

Hence, the filling level of the incoming slots correspond to
a filling level for the outcoming slot that can be computed by
means of an aggregation. In the following we will assume that
such an aggregation can be modeled by a so called s-norm [2]� � 	 
 � � � � �� 	 
 � � � such that if � " $ &� � � " ) &� � + + + � � " - / ) &� are the
incoming fluxes then1 � 3 � " $ &� � � " ) &� � 5 5 5 � � " - / ) &� (1)

is the filling level of the � -th outgoing slot.
The family of s-norm is formally defined as containing those

functions such that

(s1) 7 � 9 ; � > ? 3 9 7 � ; ? � >
(s2) 7 � ; 3 ; � 7
(s3) 7 � 
 3 7
(s4) 7 B > � ; B D F 7 � ; B > � D

These axioms simply encode the intuitive need for a monotonic
(s4) aggregation mechanism that is associative (s1) and commuta-
tive (s2) so that aggregations do not depend on the order in which
we consider incoming fluxes, and such that void slot are unimpor-
tant (s3).

Some possible s-norms are the � � � operator 7 � ; 3� � � K 7 � ; M
, the probabilistic sum 7 � ; 3 7 O ; Q 7 ;

, the saturating
sum 7 � ; 3 � S U K � � 7 O ; M

and the operator

7 � Y [ \ ; 3 ] � � � K 7 � ; M
if � S U K 7 � ; M 3 
� otherwise

From axioms we easily get that any s-norm satisfies� � � K 7 � ; M ` 7 � ; ` 7 � Y [ \ ;
so that they actually span the

range between the more “optimistic” view of the � � � (none but
the heaviest incoming traffic flux affects the output) and the “pes-
simistic” behavior of

� Y [ \
(whenever all the aggregated fluxes

are non-null the output is saturated to its maximum).
We will additionally require that the s-norm is continuous.

With this, a straightforward generalization of the fundamental re-
sult in [3] allow us to say that there must be a possibly countable
collection of open intervals � 7 d � ; d 	 and corresponding continuous
nondecreasing functions e d � 	 7 d � ; d � �� h j (the so called gener-
ating functions such that

7 � ; 3 ] e kd 9 e d 9 7 ? O e d 9 ; ? ?
if 7 � ; m � 7 d � ; d 	� � � K 7 � ; M
otherwise

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

549



where the “pseudo-inverse” � �� of � � is defined as

� �� � � � � 
��
�

� � if
� � � � � � � � � � � �� � �� � � �

if
� � � � � � � � � � � � � � � � �� � if
� � � � � � � � � � �  �

It is finally sensible to assume that, when � � � $ � we also have� % � $ ( * , . � � � /
to indicate that, with the exception of a null

contribution, no input can be actually neglected in the aggrega-
tion.

With this we get that the collection of intervals � � � � � � � and
associated functions � � must actually consist of only one ele-
ment. In fact, if there were at least two of them we may as-
sume � 2 � � 4 � � 4 � 6 4 � 6 2 7 and compute

� � % � 6 �( * , . � � � � 6 / � � 6 for the two numbers
� � and � 6 that are strictly

above zero. For analogous reasons we must have � � � � and� � � 7 .
Hence, the family of s-norms in which we are interested is

made of aggregation mechanisms that are univocally identified
by a single continuous nondecreasing generating function � <� � � 7 � @A C E by the definition� % � � � � � � � � � � � � � � �

Since only one generating function exists we may also assume� � � � � � to recast the definition of pseudo-inverse as

� � � � � � H � � � � � �
if

� � � � � � � 7 � �7 if
� � � � � 7 � � �  �

Note that, even if we have formally excluded
% � ( * , from

the class of s-norms we consider, we may approximate its be-
havior arbitrarily well considering, for example, � � � � � � M

forN A  . Note also that, for N A � , the same generator produces% Q S U
. With this we know that the family of aggregation we an-

alyze is able to span the whole range of optimistic-pessimistic
choices allowed by the s-norm axioms.

Finally, the presence of a single generating function allows us
to say that, in case of multiple aggregation, the output process can
be written as V W � � � Z [ � �^ � _ ` � � a b � cW � e

(2)

To prove this we may exploit the associativity of
%

and proceed
by induction. For f � i the fact is intrinsic in the expression of%

in terms of its generating function.
For f $ i we may assume that the property holds for f j 7

and writeV W � � � Z � Z � � Z [ � 6^ � _ ` � � a b � cW � e e � � � a b [ � � cW � e
Two cases must be taken into accounto If p [ � 6� _ ` � � a b � cW � 2 � � 7 �

then

� Z � � Z [ � 6^ � _ ` � � a b � cW � e e � [ � 6^ � _ ` � � a b � cW �
and (2) is proved.

o If p [ � 6� _ ` � � a b � cW � $ � � 7 �
then

� Z � � Z [ � 6^ � _ ` � � a b � cW � e e � � � 7 �
and thus V W � � � � � � 7 � � � � a b [ � � c � � � 7
that coincides with what (2) would give due to the non de-
creasing nature of � .

3. Auto-correlation trend and aggregation

Assuming to deal with processes a W that are stationary, we con-
sider the auto-covariance functionu v � w � � y � a ` a { � j y 6 � a ` �� | } ` ~ � � � � � � � v � v � � � � � � j � v � � � � � v � � � � � � � � �
where � v � ~ v �

is the joint probability density of a ` and a { while� v �
and � v �

are the (identical) probability densities of a ` and a {
separately.

We aim at investigating how the asymptotic trends of the co-
variance functions

u v � � � � w �
mix up to determine the asymptotic

trend of the covariance function
u � � w �

of the aggregated process.
In particular we will show that the slowest decaying correlation

dominates and determines the decay of correlation of the aggre-
gation.

To do so, we decompose the proof into two parts. First we
prove two Lemmas saying thato the decay of correlation is dominated by the slowest trend

when independent processes are summedo the asymptotic relationship between any two decays of cor-
relation does not change when applying a continuous non-
decreasing transformation

To prove the first Lemma assume that f processes � b � cW ( � �� � 7 � � � � � f j 7 ) are given and that � W � p [ � �� _ ` � b � cW .
Since the summands are independent we haveu � � w � � y � � ` � { � j y 6 � � ` � �� [ � �^ � _ ` [ � �^� _ ` y � � b � c` � b � c{ � j [ � �^ � _ ` [ � �^� _ ` y � � b � c` � b � c` �

� [ � �^ � _ ` y � � b � c` � b � c{ � j y 6 � � b � c` �
� [ � �^ � _ ` u � � � � � w �

from which we easily get that if we may exclude exact cancel-
lations, the slowest covariance decay sets the global covariance
decay.

To address the second Lemma we may note that, considering
two processes � W and � W � � � � W �

where � is a continuous
nondecreasing transformation we may define� { � � � � � � � � � ~ � � � � � � � j � � � � � � � � � � � �
to write u � � w � � | } ` ~ � � � � � � { � � � � � � � � �

550



and � � � � � � � 	 
 �  � � � � � � � � � � � � � � � � � � � � �
and realize that the vanishing of both covariance functions must
depend on the vanishing trend of � as

� � � , i.e. on the mixing
properties of the process [5].

We will assume that this vanishing trend is uniform from above
and from below, i.e., that an infinitesimal function � � � �

and two
constants � � � ! " � ! ! exist such that

� ! � � � � " % � � � � � � � % " � ! ! � � � �
for all points � � � with the possible exception of those belonging
to a set whose probability vanishes when

� � � .
With this we may asymptotically write

� ! � � � � � 	 
 �  � � � � � � � � " % � + � � � %
" � ! ! � � � � � 	 
 �  � � � � � � � �

� ! � � � � � 	 
 �  � � � � � � � � � � � � � � " % � � � � � %
" � ! ! � � � � � 	 
 �  � � � � � � � � � � � � � �

confirming that the asymptotic trend of the two covariance func-
tions is the same.

The assumption on the uniform vanishing of the mixing term �
is somehow restrictive. It can be easily seen that it must hold for
memory-one exact processes that assume only a finite number of
values (in this case the � � � �

trend is exponential) (see e.g. [6]). It
can be reasonably expected that, in the above setting, the memory-
one property is not necessary to cause uniform mixing that has
more to do with exactness and finiteness of the number of values
(see, for example, [7] for a uniform mixing process that is self-
similar).

Though a formal proof of this has not been perfected so far we
will assume that the class of processes satisfying uniform mixing
is large enough to comprise the interesting phenomena.

Once that these two Lemmas are available, we may resort to (2)
to realize that the aggregated process is obtained by first passing
all the incoming fluxes through the function - . This preserves the
asymptotic behavior of their covariance functions. Then, these
distorted versions of the inputs are then summed and the slowest
trend dominates. The last application of the function - . finally
translates this dominant trend to the output stream.

4. Application to Second-order Self-Similarity

We may now recall the scenario entailing traffic fluxes to apply
the above result and find that, self-similar traffic in one of the in-
coming fluxes is going to produce self-similar bursts in the output
stream.

In fact, the most common definition of second-order self-
similar traffic depends on the scale-invariant properties of the co-
variance function. In particular, given a process / 1 its aggregated
version of order 2 is defined as

/ 4 6 81 � 92 6 : ;< = 
 / 1 6 ? <

and the 2 -th order covariance function as� 4 6 8 � � � � B D / 4 6 8
 / 4 6 8� E F B G D / 4 6 8
 E
The original process is said to be second-order asymptotically

self-similar if [8] a number � H E � � 9 D exist such that� 4 L M 8 � � �� 4 M 8 � � � O P : R
and � 4 M 8 � � �� 4 M 8 � � � O � : R
when � � � � � .

It is quite well known that the above conditions are met when� 4  8 � � � O � : R , when the covariance function has a polynomial
decay.

With this, and recalling that the covariance slowest decay rate
of the inputs is the one that dominates the covariance decay rate
of aggregated traffic, one immediately derives that whenever an
incoming flux has self-similar features they are transferred to the
output.

Remark that this happens regardless of the particular aggrega-
tion mechanism, let it be as optimistic as any of the approxima-
tions of the V X Z or more pessimistic.

5. Numerical Examples

We concentrate on processes generated by chaotic maps,
namely by the simple fixed point double intermittency map de-
fined as [9]

[ � P � � \]]]^
]]]_

P` bc 9 F � d 6 b F 9 � P 6 b if P "  e G
9 F 9 F P` �c 9 F � d 6 � F 9 � � 9 F P � 6 � if P g  e G

where 2  h � and 2 G h � control the self-similarity behavior
of the process through its sojourn times in a neighborhood of �
and 9 respectively.

When 2  � 2 G � � we obtain the classical Bernoulli shift
whose decay of covariance is well known to be exponential� � � � O d : � . Then 2  � 2 G g � then we have polynomial co-
variance decay and thus self-similarity as previously defined.

To show the effect of s-norm aggregation we concentrate on
the generator - � n � � n o

that has already discussed. A graphic ofp q s
for t � � v w � d � 9 � is reported in Figure 1. Note how t � 9 �

is very close to the V X Z operator already considered in [1].

We then generate two processes P 4 
 81 and P 4 
 81 , the first by
means of a map

[
with 2  � 2 G � � v 9 and the second with

a Bernoulli shift. The two processes are aggregated by means of
the s-norms corresponding to t � � v w , t � d and t � 9 � and
covariances are estimated from a 9 � � samples chunk. Results are
reported in Figure 2, 3, and 4.

Note how the different aggregation mechanisms actually pro-
duces different correlation trends at the output. Despite this, the
righmost part of the aggregated trend is practically parallel to the
self-similar trend revealing that self-similarity is inherited from
the slowest decaying covariance.
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Figure 1: An example of s-norm corresponding to the generating
functions � 	 �  � � � � � , � 	 �  � � � , � 	 �  � � � � .
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Figure 2: Aggregating a self-similar process and a Bernoullian
process by menas of an s-norm with generating function � 	 �  �� � � � .
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Figure 3: Aggregating a self-similar process and a Bernoullian
process by menas of an s-norm with generating function � 	 �  �� � .
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Figure 4: Aggregating a self-similar process and a Bernoullian
process by menas of an s-norm with generating function � 	 �  �� � � .
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