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Abstract—The last several years have witnessed major
theoretical advances in communications and coding the-
ory resulting in a new coding concept called codes on
graphs. Codes on graphs, and specially their prime ex-
amples, low-density parity check (LDPC) codes and turbo
codes is a research area of great current interest. In this
paper we first overview the basic relation between codes
on graph and spin systems, iterative decoding algorithms
and nonlinear dynamical systems, and power-law networks
and codes on graphs. Then, we show that there exists a
class of codes, generated by quasigroup string transfor-
mations, which are almost random and outperform signif-
icantly Turbo and LDPC codes. For example, for S NR =
−0.5 dB, rate 1/4 and block length of only 864 bits produce
BER = 4.1 × 10−5.

1. Introduction

The non-constructive proof of the noisy-channel coding
theorem shows that good block codes exist for any noisy
channel, and moreover that nearly all block codes are good.
However, writing down an explicit and practical encoder
and decoder that are as good as proved by Shannon in
his seminal work A Mathematical Theory of Communica-
tion [1] is still an unsolved problem.

Recently, it has been recognized that two classes of
codes, namely turbo codes and low-density parity-check
(LDPC) codes, perform at rates extremely close to the
Shannon limit. Turbo and LDPC codes are based on a
similar philosophy: constrained random code ensembles,
described by some fixed parameters plus randomness, de-
coded using iterative algorithms or message passing de-
coders.

The relationship between codes on graphs and spin
models was discovered and described in a series of pa-
pers [2, 3, 4]. Following this relation, it has been shown
that turbo codes correspond to coupled spin chains, while
LDPC represent spin models on diluted graphs. Moreover,
we suggested a link between coding theory (iterative algo-

rithms) and chaos theory [5]. Furthermore, recently it was
shown that the world’s best performer LDPC codes and the
Tornado codes have power law degree distributions [6].

In this paper we first briefly overview the basic relation
between codes on graph and spin systems, iterative de-
coding algorithms and nonlinear dynamical systems, and
power-law networks and codes on graphs. Then we de-
scribe a class of error correcting codes with the following
property: for an arbitrary codeword C, the distribution of
substrings of C of length r is uniform. An instance of such
codes implemented with quasigroup string transformations
is described in detail. Our preliminary numerical simula-
tions show that proposed codes outperforms significantly
corresponding turbo and LDPC codes.

2. Coding Theory and Statistical Physics

It is known that error correcting codes can be mapped
onto disordered spin models [2, 3, 4]. Equivalent spin
models have been intensively studied in the last few years.
These are diluted spin glasses, i.e., spin glasses on ran-
dom (hyper)graphs. The new codes are decoded by us-
ing approximate iterative algorithms, which are closely re-
lated to the cavity approach to mean-field spin glasses. For
example, one can define two different performance mea-
sures for evaluating LDPC codes. The first is the practical
performance achievable in feasible time scales that grow
polynomially with the systems size; while the other is the
optimal theoretically achievable performance, for which
the required computation typically increases exponentially
with respect to the message length. Utilizing the similar-
ity between LDPC codes and Ising spin systems, statistical
physics provides a scheme for evaluating both performance
measures within the same framework; the current standard
method used in the information theory community can only
provide an estimate of the practical performance, and prac-
tically reduces to the one used within the statistical physics
framework.

Recently, Kim and Ko [6] have investigated the poten-
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tial of scale-free networks as error-correcting codes. They
found that irregular low-density parity-check codes with
the highest performance known to date have degree dis-
tributions well fitted by a power-law function p(k) ∼ k−γ
with γ close to 2, which suggests that codes built on scale-
free networks with appropriate power exponents can be
good error-correcting codes, with a performance possibly
approaching the Shannon limit. They demonstrated for an
erasure channel that codes with a power-law degree dis-
tribution of the form p(k) = C(k + α)−γ, with k ≥ 2 and
suitable selection of the parameters α and γ, indeed have
very good error-correction capabilities.

It is known [7, 5] that iterative decoding algorithms
may be viewed as complex nonlinear dynamical systems.
Richardson [7] has developed a geometrical interpretation
of the turbo-decoding algorithm, and formalized it as a
discrete-time dynamical system defined on a continuous
set. In the formalism of [7], the turbo-decoding algorithm
appears as an iterative algorithm aimed at solving a sys-
tem of 2n equations in 2n unknowns, where n is the block-
length of the turbo code at hand. If the algorithm converges
to a codeword, then this codeword constitutes a solution to
this system of equations. Recently, in [5] we studied it-
erative decoding algorithms as discrete-time nonlinear dy-
namical systems. We proposed a simplified representation
of several well-known iterative decoding schemes in terms
of a posteriori average entropy. We found that, in general,
iterative decoding algorithms may exhibit a whole range of
phenomena known to occur in nonlinear systems. These
phenomena include the existence of multiple fixed points,
oscillatory behavior, and even chaos (for a finite block-
length). We have also shown how the general principles
distilled from our analysis may be applied to enhance the
performance of existing iterative decoding schemes.

3. Almost Random Codes Based on Quasigroup String
Transformations

3.1. Description of the Code

A source of information produces a stream of symbols.
The stream is partitioned into blocks of length Nblock. Each
of the possible 2Nblock blocks is mapped to a codeword (i.e.,
a sequence of bits) of length N > Nblock by the encoder
and transmitted through the channel. Therefore, an error
correcting code is defined as a mapping T : {0, 1}Nblock →
{0, 1}N .

The code T proposed in this paper is defined as follows.
Let M be a block of Nblock bits. First we add zero bits and
produce a block L of length N. Second, we rewrite L as
L = L1L2 . . . Lp, where each Li is a block of s bits (we
assume that N = sp). Third, the block L is mapped with a
bijection to a block C = C1C2 . . .Cp in the following way.

Let k1,1, k1,2, . . . , k1,n be n initial strings each of length s.

The block L is mapped to C as

For i = 1, 2, . . . p
bi,0 = Li

For j = 1, 2, . . . n
bi, j = f (ki, j, bi, j−1)
ki+1, j = g(ki, j, bi, j−1)

End j
Ci = bi,n

End i

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where f and g are appropriate operations. Note that (1)
defines uniquely our code T .

If we write k(i) = ki,1ki,2 . . . ki,n, i = 1, 2, . . . , p + 1, then
equation (1) defines also the following two maps. First, a
map F : An×Ap → An×Ap such that (k(p+1),C) = F(k(1), L),
where A = {0, 1}l is a set of all strings with length l. Sec-
ond, a map G1 : An × A1 → An × A1 such that (k(i+1),Ci) =
G1(k(i), Li). For this reason we say that our code is double
iterative: (i) for each Li, f is iterated n times to produce Ci;
and (ii) k(1) is iterated p times to give k(p+1).

In the following instead of G1 we will work with the map
G4 ≡ G. For simplicity only let assume that p = 4r. Then
equation (1) can be rewritten as

For l = 1, 2, . . . r
L(l) = L4l−3L4l−2L4l−1L4l

For i = 4l − 3, 4l − 2, 4l − 1, 4l
bi,0 = Li

For j = 1, 2, . . . n
bi, j = f (ki, j, bi, j−1)
ki+1, j = g(ki, j, bi, j−1)

End j
Ci = bi,n

End i
C(l) = C4l−3C4l−2C4l−1C4l

End l.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Equation (2) defines a map G : An × A4 → An × A4 such
that (k(4l+1),C(l)) = G(k(4l−3), L(l)).

In addition, our code has the following property, which
will be proven in the next section: the code is almost ran-
dom, which means that for every M ∈ {0, 1}Nblock , the dis-
tribution of substrings of C = T (M) ∈ {0, 1}N of length k,
1 ≤ k ≤ n, when N is large enough, is uniform.

3.2. Quasigroup String Transformations

We give a brief overview of quasigroup operations and
quasigroup string transformations (more detail explanation
the reader can find in [8], [9]).

A quasigroup is a groupoid (Q, ∗) satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v & y ∗ u = v).

This implies the cancellation laws x ∗ y = x ∗ z =⇒ y =
z, y∗x = z∗x =⇒ y = z and the equations a∗x = b, y∗a =
b have unique solutions x, y for each a, b ∈ Q. If (Q, ∗) is
a quasigroup, then ∗ is called a quasigroup operation.
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Consider an alphabet (i.e. a finite set) A, and denote by
A+ the set of all nonempty words (i.e. finite strings) formed
by the elements of A. The elements of A+ will be denoted
by a1a2 . . . an rather than (a1, a2, . . . , an), where ai ∈ A. Let
∗ be a quasigroup operation on the set A. For each l ∈ A
we define a function el,∗ : A+ → A+ as follows. Let
ai ∈ A, α = a1a2 . . . an. Then

el,∗(α) = b1 . . . bn ⇐⇒ bi+1 = bi ∗ ai+1 (3)

for each i = 0, 1, . . . , n − 1, where b0 = l. The function el,∗
is called an e-transformation of A+ based on the operation
∗ with leader l.

Several quasigroup operations can be defined on the set
A and let ∗1, ∗2, . . . , ∗k be a sequence of (not neces-
sarily distinct) such operations. We choose also leaders
l1, l2, . . . , lk ∈ A (not necessarily distinct either), and then
the composition of mappings

Ek = el1,∗1 ◦ el2,∗2 ◦ . . . ◦ elk ,∗k

is said to be an E-transformation of A+. The function
Ek which is actually a permutation, have many interesting
properties, and for our purposes the most important one is
the following:
Theorem 1 ([9]) Consider an arbitrary string α =
a1a2 . . . an ∈ A+, where ai ∈ A, and let β = Ek(α). If n
is large enough integer then, for each l : 1 ≤ l ≤ k, the dis-
tribution of substrings of β of length l is uniform. (We note
that for l > k the distribution of substrings of β of length l
may not be uniform.)

3.3. Software Implementation

The coding has two parts. We now describe a design of
a 1/2 rate code only; the generalization to different coding
rates is straightforward. Suppose that the message to be
sent has the form M = m1m2 . . .m18, where mi are nibbles
(4-bit letters). In the first part, we add redundant infor-
mation and obtain L = L(1)L(2)L(3)L(4)L(5)

5 L(6)L(7)L(8)L(9),
where L(1) = m1m2m304, L(2) = m4m5m604, L(3) =

m7m8m904, L(4) = 04040404, L(5) = m10m11m1204, L(6) =

m13m14m1504, L(7) = m16m17m1804, L(8) = 04040404, L(9) =

04040404, where 04 is the string of 4 zeros (zero nibble).
Therefore, each L(i) is a string of 16 bits. Since we add 18
zero nibbles, the rate of the code is 1/2. This is schemati-
cally shown on Table 1; in this table we also show rate 1/4
code. For this 1/2 code we also say that it is (72,144) code
(the length of M is 72, the length of L is 144).

In the second part of the coding we choose f to be the
quasigroup operation defined in Table 2 and g to be

ki+1, j = bi, j if j = 1, . . . n − 1

ki+1,n = bi,1 ⊕ . . . ⊕ bi,n.

The left parastrophe Qpar(\) of the quasigroup Q(∗) that
we used in our experiments for the decoding algorithm is
shown in Table 3.

Table 1: Codes with rates 1/2 and 1/4
Rate 1/2 Rate 1/4

m1 m2 m3 0
m4 m5 m6 0
m7 m8 m9 0
0 0 0 0

m10 m11 m12 0
m13 m14 m15 0
m16 m17 m18 0
0 0 0 0
0 0 0 0

m1 m2 0 0
m3 m4 0 0
m5 0 0 0
0 0 0 0

m6 m7 0 0
m8 0 0 0
m9 0 0 0
0 0 0 0
0 0 0 0

Table 2: A quasigroup of order 16
* 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 3 c 2 5 f 7 6 1 0 b d e 8 4 9 a
1 0 3 9 d 8 1 7 b 6 5 2 a c f e 4
2 1 0 e c 4 5 f 9 d 3 6 7 a 8 b 2
3 6 b f 1 9 4 e a 3 7 8 0 2 c d 5
4 4 5 0 7 6 b 9 3 f 2 a 8 d e c 1
5 f a 1 0 e 2 4 c 7 d 3 b 5 9 8 6
6 2 f a 3 c 8 d 0 b e 9 4 6 1 5 7
7 e 9 c a 1 d 8 6 5 f b 2 4 0 7 3
8 c 7 6 2 a f b 5 1 0 4 9 e d 3 8
9 b e 4 9 d 3 1 f 8 c 5 6 7 a 2 0
a 9 4 d 8 0 6 5 7 e 1 f 3 b 2 a c
b 7 8 5 e 2 a 3 4 c 6 0 d f b 1 9
c 5 2 b 6 7 9 0 e a 8 c f 1 3 4 d
d a 6 8 4 3 e c d 2 9 1 5 0 7 f b
e d 1 3 f b 0 2 8 4 a 7 c 9 5 6 e
f 8 d 7 b 5 c a 2 9 4 e 1 3 6 0 f

3.4. Results

The transmitted code word is C. Due to the noise, a dif-
ferent sequence of symbols D = d1d2 . . . d4r, where di is a
nibble received. The decoding problem is to infer L, given
D, the definition of the code, and the properties of the noisy
channel. Since the operations in our algorithm are discrete
ones, it is applicable straightforward on a binary symmet-
ric channel, however, if the channel is continuous additive
(like AWGN), the additional soft information obtained for
every received bit can be used for decreasing the number of
decoding candidates in sets S i (see below).

In the process of decoding, we iteratively decode 4-
tuples D(i) = d jd j+1d j+2d j+3, j = 1 + 4(i − 1), i = 1, 2, . . . r,
and check if 04 is a nibble of the corresponding L(i), or
if L(i) is a string of zeros only. However, since D(i) =

d jd j+1d j+2d j+3, j = 1 + 4(i − 1), i = 1, 2, . . . r, differs from
the corresponding codeword C(i) = c jc j+1c j+2c j+3 in some
bits, in process of decoding we decode every 4-tuple which
is less than B bits distant from D(i). In a few words: decod-
ing of the codeword is a process of a search of those D(i)s
for which, when decoded, the last nibble is a string of 4
zeros, and L(i) is a string of zeros only. Those D(i)s in every
decoding step i form a set S i of decoding candidates.

It is obvious that this step is the most crucial iterative
part of the decoder. During the process of decoding, the
number of elements in the sets S i of all possible candidates
can increase dramatically, so it is important to keep this
number under control. Positioning of the redundant data in
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Table 3: The left parastrophe Qpar(\) of the quasigroup
Q(∗)

\ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 8 7 2 0 d 3 6 5 c e f 9 1 a b 4
1 0 5 a 1 f 9 8 6 4 2 b 7 c 3 e d
2 1 0 f 9 4 5 a b d 7 c e 3 8 2 6
3 b 3 c 8 5 f 0 9 a 4 7 1 d e 6 2
4 2 f 9 7 0 1 4 3 b 6 a 5 e c d 8
5 3 2 5 a 6 c f 8 e d 1 b 7 9 4 0
6 7 d 0 3 b e c f 5 a 2 8 4 6 9 1
7 d 4 b f c 8 7 e 6 1 3 a 2 5 0 9
8 9 8 3 e a 7 2 1 f b 4 6 0 d c 5
9 f 6 e 5 2 a b c 8 3 d 0 9 4 1 7
a 4 9 d b 1 6 5 7 3 0 e c f 2 8 a
b a e 4 6 7 2 9 0 1 f 5 d 8 b 3 c
c 6 c 1 d e 0 3 4 9 5 8 2 a f 7 b
d c a 8 4 3 b 1 d 2 9 0 f 6 7 5 e
e 5 1 6 2 8 d e a 7 c 9 4 b 0 f 3
f e b 7 c 9 4 d 2 0 8 6 3 5 1 a f

L, as shown in Table 1, is used for this purpose, but also
other techniques for eliminating the most unlikely candi-
dates can be applied. At the end of the iterative decod-
ing, eventually the number of elements in S i decreases to
one, meaning that all errors are found and corrected. The
decoder has also the following two properties: (i) (wrong
decision detection) if somehow the right candidate is elim-
inated from the set of candidates S i, several steps further
the decoding process will eventually result in an empty set
S j, which is an evidence that some wrong decoding deci-
sion was made, and (ii) (early decoding property) since the
decoding is done iteratively with equation (2), decoding of
correct bits starts much earlier: for example, even if the
block length is 864 bits, the decision on correct bits will
start just after decoding approximately 60 bits. This prop-
erty gives another unique property of our code: if the de-
coding is done with some errors, large part of the decoded
block has correct information.

Our numerical experiments are summarized on Figure
1. On Figure 1 we present the results of our (216,864)
code with rate 1/4 compared with the JPL implementation
of Turbo Codes of length 65536 bits and irregular LDPC
codes over GF(8) with length of 48000 bits (the data for
Turbo and LDPC codes are from [10] p.568).

4. Conclusions

In this work we have designed a class of error correction
codes, generated by quasigroup string transformations. Al-
though the software implementation of our code is far from
optimized, numerical experiments show that its potentials
are, in this moment, far beyond the capabilities of the cur-
rently best error correction codes.
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