
 

Exact Bit Error Rates of Multi-user Differential Chaos-Shift-Keying 
Communication Systems 

 
Ji Yao and Anthony J. Lawrance 

 
School of Mathematics, The University of Birmingham, Birmingham B15 2TT, United Kingdom 

Department of Statistics, The University of Warwick, Coventry, Warwickshire CV4 7AL, United Kingdom 
Email: yaoji@maths.bham.ac.uk, A.J.Lawrance@bham.ac.uk 

 
Abstract–Theory giving the nearly exact bit error rates 

(BER) of multi-user chaos-shift-keying digital 
communication systems is derived analytically in the 
differential non-coherent case. Accurate approximation 
and numerical integration are then used to give the 
required results; these are demonstrated to conform with a 
pure-simulation study and thus inductively verify their 
correctness.  A condition is deduced for the BER to be 
independent of the mix of transmitted bit types.  The 
modulation scheme provides a possible choice for multi-
access communication. 

1. Introduction 

Chaos-based communication has attracted intensive 
research interest over recent years, much dealing with 
chaos-shift-keying systems for single users.  The 
wideband property of many chaotic wave forms indicates 
that a similar approach is particularly suitable for multi-
access schemes but for these the theory is less developed.  
In this paper, focus is therefore on the performance 
analysis of multi-user differential-chaos-shift-keying 
(DCSK) digital communication systems with correlation 
decoding, following on from the corresponding single-
user systems [1].  The differential, alternatively called 
non-coherent, aspect makes the systems realistic without 
problematic chaotic synchronization. 

There have been some DCSK multi-access schemes 
considered in the previous publications [2]-[5].  The 
general advantage of DCSK schemes over the 
corresponding coherent schemes is the reduction by one-
half of channel resources, and therefore the doubling of 
system efficiency.  Of course, the performance of the 
system is thereby reduced.  However, due to the 
complication of the dynamics of chaotic sequences, 
performance analysis of such systems is usually based on 
applying the Central Limit Theorem (CLT) to dependent 
variables, with its consequent slow convergence 
behaviour.   This paper demonstrates the advantages of 
knowing the exact performance of such systems. 

2. Multi-user DCSK Communication Systems 

In this section, general configurations of multi-user 
differential-chaos-shift-keying (DCSK) communication 
systems are described.  Because there are several possible 
conventional multi-access schemes available to implement 
this system, a relatively abstract model is considered. The 

block diagram of this model is given in Fig. 1. 

2.1. The DCSK Modulation Scheme 

Assume there are  users within the multi-user DCSK 
system.  Analysis is focused on the transmission of one bit 
for each user, i.e. b  for the l

L

l
th user, over the same time 

duration. 

 
Fig. 1. Block diagram of multi-user DCSK communication system. 

In a single-user DCSK communication system, a 
typical bit uses two time slots.  In the first slot (the 
reference slot) a reference sample is transmitted and in the 
second slot (the data slot) a data sample is transmitted by 
modulating the reference sample with the information bit. 
In a multi-user system, it is possible to transmit the data 
samples of all users through the same channel, however, 
in order to achieve an acceptable performance, the 
reference samples no longer share the same channel [2]-
[5], as shown in Fig. 1.  But this doesn’t mean that a real 
channel have to be allocated to each to user to transmit the 
reference sample.  Any multi-access technology can be 
applied here.  For example, in the case of only one real 
channel available, the reference samples can be 
transmitted during different time slot and the data samples 
are transmitted in same time slot.  The advantage og this 
scheme is that it apparently saves half time than the pure 
time-division system. 

To transmit the bit information b , the reference 

sequence takes a segment 
l

{ }, 1, 2,..., 1l l i N= = −

lX

0,ix x  of 

 successive values from a chaotic waveform { } ;  
is termed the spreading factor.  These segments are 
N N
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generated by a common chaotic map ( )

1=

,0l

( x

)T−

c

e

)T−

T iT

τ ⋅

c

c

)c−

 irrespective of 
the user, that is 

2

)ciT−

( ), 1 ,l i l ix xτ+ = 0,1,2,..., 1i N= −  and l L . (1) , 2,...,

The chaotic sequence {  is assumed to have been 
started with a random initial value x  which is chosen 

from the natural invariant distribution ρ  of the map.  

The mean of {  is denoted by µ  and the variance by 

.  As it is always possible to move the map to achieve 
 without changing the dynamical properties of the 

map,  is assumed throughout the paper.   

}lX

)
}lX

2
Xσ

µ = 0
0µ =

The output of the chaotic signal generator used by the 
l th user, denoted by , is given by ( )lh t

 , (2) ( ) (
1

,
0

c

N

l l i T
i

h t x g t i
−

=

= ∑
where  is the time interval between change of x , 
which is always a constant; g  is a rectangular pulse 
of unit amplitude and width T , i.e. 

cT i

( )
cT t

c

 . ( ) 1, 0
0,cT

t T
g t

elsewher
≤ <

= 


In the reference slot, the chaos sequence is transmitted 
directly as the reference sample, i.e. the reference sample 
for the l th user is  

 . (3) ( ) (
1

,
0

c

N

l l i T
i

h t x g t i
−

=

= ∑ r t

In the data slot, the information bit is modulated by 
.  To avoid the modulated values being out of 

range of the map, the domain of chaotic map τ  is 
assumed to be symmetric about its mean µ = .  Thus, 
denoted by s , the transmitted data sample of the l

( )l lb h t

( )x
0

( )l t th 

user is 

 . (4) ( ) ( ) (
1

,
0

c

N

l l l i
i

s t b x g t
−

=

= ∑

2.2. Channel Model 

An additive white Gaussian noise (AWGN) channel is 
considered in this paper.  Although the reference sample 
and data sample may transmitted through different 
channels, it is assumed that the noise in the reference 
channel and data channel has the same two-sided power 
spectral density given by ( ) 0nS f N= . 

Let  be the AWGN to the reference sample of 

the 
( ),r ln t

l th user. For convenience, we replace n  by an 

equivalent noise source n , given by 
( ),r l t

( ),r l t′
∞

 ,  ( ) (, ,
0

cr l l i T
i

n t g tη
=

′ = ∑ C y

where  are modeled as Gaussian 

random variables with mean 0 and variance 

,l iη ( 0,1,..., 1i N= )−

)(2
0 2n N Tσ =

(l

( )l lu t x= +

, ,l i l iy x= +

,l iε

l

( ) ( )l ls t= +

, ,l i l lz b

l

c

)c

,

)−

,

.  Because the reference sample is 
transmitted through different channels for different users, 
as previously explained, the transmitted reference sample 
of the l th user is only contaminated by its own channel 
AWGN. So the received reference sample of the l th user, 
denoted by u t , is )

η

d l′

0,i

1,

L

k k
∑

ix= +

(r t

iT−

t

ciT

E N

C r

l lC r u

( ,l lz

σ

1

0

−

( ) ( ) (
1 1

, , ,
0 0

c c

N N

i l i T c l i T
i i

g t iT y g t
− −

= =

− ≡∑ ∑ . (5) 

where . l iη

In the data slot, let n t  be the AWGN 

contaminating the data sample of the l
( ),d l

)t

th user.  Thus, as 
with the reference slot, we replace n  by an 

equivalent noise source n , given by 
( ),d l

(,d l′
∞

 ,  (6) ( ) ( ), ,
0

cl i T c
i

n t g t iTε
=

= −∑
where  are independent Gaussian 

random variables with zero mean and same variance σ . 
( 1,..., 1N=

2
n

The data samples of each user are transmitted through 
the same channel, and so each is corrupted by both 
AWGN and the transmitted waveforms of the other L  
users, termed as interference.  The received data sample 
the of the 

1−

th user, denoted by , is thus ( )lr t

( ) ( ),k d l
l

s t n t
= ≠

′+

L

( )
1

,
0

c

N

l i T
i

z g t
−

=

≡ −∑ ,(7) 

where .  Note that the only 

difference in  for different users is the channel noise; 
the sum of data samples of all users is received by each 
user. 

,
1,

k k i l i
k k l

b x ε
= ≠

+∑
)

The signal-to-noise energy ratio (SNR) of the system is 
 ( ) ( )2 2

0 02b c X XNT N Nσ σ≡ = , (8) 2
n

)

)

which is different from the coherent case. 

2.3. Demodulation Scheme 

With the commonly used correlation decoder, 
demodulation takes the form 
 , (9) ( ) ( ) ( )

0
, cNT

l l l lu r t u t dt= ∫
which calculates the covariance between r t  and u t , 
and takes a sample over time NT  to make the 
demodulation decision.  By (5) and (7), (9) can be 
simplified as 

( )l

c

( )l

 , (10) ( ) (
1

, ,
0

, ,
N

c l i l i c l l
i

T y z T C y z
−

=

= ≡∑

where  is the discrete covariance ∑ . 

With the correlation decoder, the transmitted bit b  is 

, ,

N

l i l i
i

y z
=

l
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estimated as b  by l̂

BER

( )

( )l lZ= <

P X

(l lb

1 1b

( )P x

Z

Z

 . (11) 
( )
( )

1 ,ˆ
1 ,

l l
l

l l

if C y z
b

if C y z
+ ≥= −

0
0<

3. Exact Bit Error Rates 

The bit error rates (BER) of the l th user are the 
probabilities that this user estimates a bit value as –1 
given +1 is transmitted or that the user estimates a it value 
as +1 given that –1 was transmitted.  So the overall BER 
of the l th user takes the form 
 ( ) ( )1 1l l l lP b BER b= = + ⋅ = +  

                ( ) (1l l lP b BER b+ = − ⋅ = − )1 , (12) 
in which, following (10) and (11) is   

( )ˆ1 1 |l l l lBER b P b b= + = = − = +1

1= +

 

, 0 | lP C Y b    

( ) ( ) ( ) ( ) ( ) ( )
1

1, ,
0 1,

0
N L

i i i
l k k i l l i

i k k l
b X Xτ τ ε τ η

−

= = ≠

       = + + +           
∑ ∑

  (13) F x


<

2 21 1

0 0

1; , , ,
2 2

N N
i i i i

DNCF
i i

a c a c
F N N

− −

= =

 + −   =     
     

∑ ∑ , (21) 

and 1BER = −

k

 has a similar expression.  In (13) 
upper case letters are used to denote continuous random 
variables and b  are discrete random 
variables taking value –1 or +1.  It is interesting to note 
that the two conditional probabilities of (13) are not 
trivially equal, but see Section 4.  A two-stage approach [6] 
is used to calculate the BER.  

( 2,3,...,k =

)

)L

3.1. Two-stage Exact Analysis (TSE) Approach 

Consider the BER of the 1st user, as being typical, in 
this DCSK system.  In stage I of dealing with channel 
noise, the spreading sequence of all users and the 
transmitted bits of all users except the demodulating user, 
are considered known; only the ε  and η  are random 
variables.  Therefore, from (13), the BER of the 1

1,i 1,i
st user 

conditional on  is 1 1b = +

( ) ( )1 2 2 3, 1, , ,..., , , ,...,L LBER L N x x x b b b= +  

( ) ( ) ( ) ( ) ( )
1

1 1, 1 1
0 2

0
N L

i i i
k k i i

i k
b x xτ τ ε τ η

−

= =

     = + + +          
∑ ∑ , < . 

  (14) 
Let 
 ( )1 1, 1, 2i i n i nε σ η σ= +  (15) 

and ( )2 1, 1, 2i i n i nε σ η σ= − , (16) 

then  and  are independent standard Gaussian 
random variables because ε  and  are independent.  
From (15) and (16), one gets 

1iZ 2iZ

1,i 1,iη

 ( )1, 1 2 2i n i iZ Zε σ= +  (17) 

and ( )1, 1 2 2i n i iZ Zη σ= − . (18) 

Further let 

 ( ) ( )1
2 i

i
n

a τ
σ

= x  (19) 

and ( ) ( ) ( ) ( )1
2

2 L
i i

i
kn

c x bτ τ
σ =

 = + 
 

∑ k kx . (20) 

With these definitions (17), (18), (19) and (20), (14) 
becomes 

( ) ( )1 1 1 2 2 3, 1, , ,..., , , ,...,L LBER L N b x x x b b b= +  

( ) ( )
1

2 2
1 2 1 2

0

0
N

i i i i i i i i i i
i

P Z Z a c Z a c Z a c
−

=

  = − + + + − +   
∑ <  

2 21

1 2
0

0
2 2

N
i i i i

i i
i

a c c a
P Z Z

−

=

  + −    − +     
       

∑= + <  

2 21 1

1 2
0 0

1
2 2

N N
i i i i

i i
i i

a c c aP Z Z
− −

= =

 + −    = + +    
     

∑ ∑ <  

where  is the cumulative distribution 
function of the doubly non-central F-distribution with 
degrees of freedom r ,  and non-centrality parameters 

, .  With (19), (20) and (21), the BER can be 
calculated if the chaos sequences and other users’ 
transmitted bits are known. 

( 1 2 1 2; , , ,DNCF r r λ λ

1 2r

21λ λ

)

Define the random variables 

( ) ( ) ( ) ( )
221 1

2
1 1

0 0 2

2 2
2

N N L
i ii i

n k
i i k

a c
X b Xλ σ τ τ

− −

= = =

+   = = +      
∑ ∑ ∑ k , 

and ( ) ( )
221 1

2
2

0 0 2

2
2

N N L
ii i

n k
i i k

a c
b Xλ σ τ

− −

= = =

−   = =      
∑ ∑ ∑ k

)

. (22) 

In stage II, dealing with dynamical properties of the 
chaotic map, the joint distribution of (  is first 

assumed known exactly as 
1 2,λ λ

( ) (1 2, ,f yλ λ )z ; then the BER 

conditional on  is 1 1b = +

( ) ( )1 1, 1BER L N b = +  

( ) ( )
1 2,2 20 0

1; , , , ,
2 2DNCF

n n

y zF N N f y z dydzλ λσ σ

+∞ +∞  
=  

 
∫ ∫ .(23) 

The BER conditional on b  can be calculated in a 
similar manner; it is easy to show that  

1 1= −

( ) ( )1 1, 1BER L N b = −  

( ) ( )
1 2,2 20 0

1; , , , ,
2 2DNCF

n n

y zF N N f y z dydzλ λσ σ

+∞ +∞

′ ′

 
=  

 
∫ ∫  (24) 

where ( ) (1 2, ,f yλ λ′ ′ )z  is the joint distribution of 

 ( ) ( ) ( ) ( )
21

1 1
0 2

2
N L

i i
k k

i k

X b Xλ τ τ
−

= =

 ′ = − + 
 

∑ ∑  (25) 
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and ( ) ( )
21

2
0 2

N L
i

k k
i k

b Xλ τ
−

= =

 ′ = = 
 

∑ ∑ 2λ

) )

. 

In theory, we now have the exact BER of the 
communication system, but the joint distributions of 

 and  are difficult to calculate.  So 
approximation may be necessary. 
( 1 2,λ λ ( 1 2,λ λ′ ′

3.2. Approximation 

Calculation of the double non-central F-distribution 
function is time-consuming.  A quite satisfying 
approximation based on the central limit theorem is 

 ( )1; , , ,
2 ( )DNCF

z yF r r y z
r y z

 −
≈ Φ + + 



)

)

. (26) E N

Another key and difficult problem is calculating the 
joint probability density function of ( .  There are 
several approaches to approximate this distribution.  
However, due to the complicated structure of ( , 
few approaches provide accurate approximations. One of 
these is to approximate λ  with a -distribution due its 
structure as a sum of squares, and then approximate 

1 2,λ λ

2

1 2,λ λ

2 χ

 ( ) ( ) ( ) ( ) ( ) ( )
1 2

1 2 1 1
0 2

2 4
N L

i i i
k k

i k

X X bλ λ τ τ τ
−

= =

  = + +   
∑ ∑ X

)

)
)

 

with a Gaussian distribution conditional on . 2λ
Another approach to calculate the exact BER by (23) is 

by semi-simulation, that is, to obtain the joint distribution 
of  by simulation and then evaluate (23) by 

numerical integration.  As the joint distribution of  
and does not depend on SNR, a very accurate but time-
consuming simulation need only be done once for each 
value of .  This is the approach that will be exemplified 
in Section 5. 

( 1 2,λ λ

N

( )1 2,λ λ

4. BER not dependent on transmitted bit mix 

The results of the two-stage approach not only provide 
a BER calculation, but also allow a further important 
qualitative conclusion.  As shown in (23) and (24), the 
conditional BERs are not necessarily equal.  But when 

 has exactly the same joint distribution as 

, the overall BER does not depend on the mix of 

transmitted bit values.  If the chaotic map 

( 1 2,λ λ

( 1 2,λ λ′ ′

( )τ ⋅  is an odd-
symmetry map, and therefore has a natural invariant 
distribution symmetrical about zero, then the minus sign 
before ( ) ( 1

i Xτ )2  in  of (25) can be absorbed into 1λ′
( ) ( 1
i Xτ

kb

( 1 2,λ λ′ ′

)

)1 2,λ λ

)

; for any initial value x  there is a − .  The 
symmetric invariant distribution then guarantees the 
equality.  There is no requirement on the distribution of 

, so (  always has the same joint distribution as 

.  In other cases, including even-symmetry maps, 
the BER is dependent on the mix of transmitted bit values. 

1 1x

5. Simulation Results and Conclusions 

Analytical BER results by (23), (33) and semi-
simulation in the case of Bernoulli shift map spreading are 
compared with pure-simulation results. The Bernoulli 
shift map applied here is 

 . ( )1

2 1 1 0
2 1 0 1

x if x
x

x if x
τ

+ − ≤ <
=  − ≤ ≤

For this map, the mean and the variance of its invariant 
distribution are µ =  and 0 2 1 3Xσ = , respectively.  For a 

given 0bE N , σ  is2
n

( )0 102 10 bE N
Xσ   N . 

The analytical and simulated BERs are plotted against 
0b  in Fig. 2 for fixed L .  In the pure- 

simulation, for every different L  and , 100,000 bits 
have been transmitted in the whole system.  Fig. 2 shows 
that the nearly exact analytical BERs always provide 
excellent results compared with the pure-simulation 
BERs. 

2,5=
N

Fully analytical approaches, avoiding semi-simulation, 
will be published later in a more complete account of this 
work. 

 
Fig. 2. Analytical and pure-simulation BERs plotted against 0bE N . 
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