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Abstract— The nonlinear lateral vibrations of a can-
tilevered pipe, which is hung vertically with an end mass
and conveys fluid, are examined for the case that the upper
end of the pipe is excited periodically in a horizontal direc-
tion. The fluid velocity is slightly over the critical value,
above which the lateral vibration of the pipe is self-excited
due to the internal flow. First, the interactions between the
forced and self-excited pipe vibrations are discussed the-
oretically with the derived complex amplitude equations
of the pipe deflections. Second, the experiment was con-
ducted with the silicon rubber pipe conveying water. The
plane vibration of the pipe was observed for the case that
the upper end of the pipe is excited at the frequency which
is equal to the self-excited frequency of the pipe, though
the nonplanar vibration of the pipe is observed for the case
of no forced excitation.

1. INTRODUCTION

Flow-induced nonplanar vibration of a fluid-conveying
pipe is one of the attractive phenomena from the viewpoint
of nonlinear dynamics (Paidoussis and Li, 1993). Bajaj
and Sethna (1991) also studied theoretically and experi-
mentally three-dimensional oscillatory motions of a can-
tilevered pipe, where small different bending stiffnesses
in two mutually perpendicular directions are imposed to
break the rotational symmetry. Furthermore, Copeland and
Moon (1992) clarified experimentally that the addition of
an end mass to a cantilevered pipe yields a rotational sym-
metric system with many types of nonplanar vibrations.
Yoshizawa et al.(1998) examined theoretically and experi-
mentally the effects of the end mass on the nonplanar pipe
vibration.

In this paper, nonlinear lateral vibrations of a can-
tilevered pipe, which is hung vertically with an end mass
and conveys fluid, are examined for the case that the up-
per end of the pipe is excited periodically in a horizontal
plane. The fluid velocity is slightly over the critical value,
above which lateral pipe vibration is self-excited due to an
internal flow.

First, the four first-order ordinary differential equations
governing the amplitudes and phases of the lateral deflec-
tion of the pipe are derived from the nonlinear partial differ-
ential equations of nonplanar pipe vibration. The interac-
tions between the forced and flow-induced pipe vibrations

are examined theoretically by solving numerically the ob-
tained equations of the amplitudes and phases.

Second, the experiments were conducted with a silicon
rubber pipe. As a result, the typical effect of horizontal
excitation on nonplanar flow-induced pipe vibration, pre-
dicted in the theory, was confirmed qualitatively by exper-
iment.

2. BASIC EQUATIONS

The system under consideration (Figure 1), consists of
a flexible pipe with an end mass M, conveying an incom-
pressible fluid, which is discharged into an atmosphere at
the free end of the pipe. The pipe of length l, flexural rigid-
ity EI, mass per unit length m and cross-sectional flow area
S , is hung vertically under the influence of gravity g in its
equilibrium state. The pipe is sufficiently long compared
with its radius, and its centerline is inextensible. The inter-
nal fluid of density ρ is incompressible. The axial fluid ve-
locity vs relative to the pipe motion is assumed to be main-
tained at constant. We use two systems of co-ordinates : a
fixed system XYZ, and a moving system xyz, to describe
the motion of a pipe. The origin of the moving system is
taken to coincide with the upper clamped end of the pipe,
which is excited periodically in a horizontal direction as
follows:

Y0 = δY sin Nt (1)

Let v(s, t) and w(s, t) be the deflections of the pipe cen-
terline in the y and z directions respectively, which are ex-
pressed as functions of co-ordinate s along the pipe axis
and time t. Then the equations governing the spatial be-
havior of the pipe are derived under the assumptions that v
and w are small but finite, and the pipe has no torsion about
its centerline (Yoshizawa, 1998 and Watanabe, 1996).

Introducing the dimensionless variables which carry
the asterisk, i.e. v = lv∗,w = lw∗, s = ls∗, t =√

(m + ρS )l4/(EI)t∗, and retaining terms up to the third or-
der of v∗ and w∗, the governing equations of vi (i = v,w)
are expressed in the vector form as follows :

∂vi

∂t
= Lvi +Ni (2)

{
s = 0 : B1vi = 0
s = 1 : B2v̇i = B3vi −Nbi

(3)
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Figure 1: Analytical model

L =

[
0 1

L21 −2
√
βVs(·)′

]

Ni =

[
0

n(i, j) + δi, jkν2 sin νt

]
, B1 =

[
1 0

(·)′ 0

]

B2 =

[
0 0
0 α

]
, B3 =

[
(·)′′ 0

(·)′′′ − αγ(·)′ 0

]

Nb j =

[
0

b(i, j) + αkν2 sin νt

]

L21 = −(·)′′′′ + γ{(α + 1 − s)(·)′}′ − V2
s (·)′′

where ˙(·) and (·)′ denote the derivatives with respect to t and
s, respectively. In the equations (2) and (3), n(i, j), b(i, j)
are expressed as the third order nonlinear polynomials with
respect to v and w and δi, j is the Kronecker’s delta.

There are six dimensionless parameters involved in
equations (2), (3), i.e. the dimensionless velocity Vs =

vs/
√

EI/(ρS l2), the ratio of the lumped mass to the to-
tal mass α = M/(m + ρS )l, the ratio of the fluid mass to
the total mass β = ρS/(m + ρS ), the ratio of the gravity
force to the elastic force of the pipe γ = (m + ρS )gl3/EI,
the dimensionless amplitude of the excitation k = δY/l,
(k � 1) and the dimensionless frequency of the excitation
ν = N

√
(m + ρS )l4/(EI).

3. METHOD OF SOLUTION

3.1. LINEAR STABILITY

Neglecting the nonlinear terms with respect to v, w, and
putting k = 0 in equations (2) and (3), vv and vw become
independent of each other, and are described by the same
equations and boundary conditions.

Letting vv = qveλv t, qv =
t[Φv1(s),Φv2(s)] and substitut-

ing them into equations (2) and (3), we can cast into the

eigenvalue problem. The eigenvalue λv, being the root of
the complex characteristic equation which is symbolically
described by

f (λv : Vs, α, β, γ) = 0 (4)

can be found numerically from the equation. The eigen-
value λv is equal to i(ωr+iωi), whereωr is the linear natural
frequency and ωi corresponds to the damping coefficient.

The lowest value of Vs, at which the flow-induced pipe
vibration appears for the second mode, is 6.03 and will be
reffered to as the critical flow velocity Vcr in the case of
α = 0.13, β = 0.26, γ = 20.6.

An eigenvector qv of the second mode, which is used in
the following section, can be found in the form of a power
series of s, and satisfies the condition 〈qv,qv〉 = 1 where
brackets denote the inner product 〈x,y〉 = ∫ 1

0
tx(s)y(s)ds.

Moreover we get the equations of the adjoint vector q∗v =
t[Ψ11(s),Ψ12(s)] of qv from the condition:

〈Lqv,q
∗
v〉 = 〈qv, L

∗q∗v〉 (5)

The adjoint vector q∗v, which is expressed in the form of a
power series of s, also satisfies the condition 〈qv,q

∗
v〉 = 1.

3.2. NONLINEAR STABILITY

In this subsection, the equations governing the ampli-
tudes and phases of v and w are derived for the case when
the flow velocity Vs is near the critical velocity Vcr.

The Banach space, which includes vv and vw, is ex-
pressed as Z =X ⊕M (Paidoussis and Li,1993). X is the
eigenspace spanned by the eigenvectors qv and qw, which
correspond to the linear unstable vibration modes of vv and
vw, respectively. M is the subspace of X. Therefore vi

(i = v,w) are expressed as follows:

vi(s, t) = ai(t)qi(s) + yi(s, t) + C.C. (6)

where yv and yw are the elements of M .
Using the projection Pi onto X, the equations (2) with

boundary conditions (3) are decomposed as follows:

Pi
∂vi

∂t
= PiLvi + PiNi, (i = v,w) (7)

where Pix = 〈x,q∗i 〉qi.
From equations (7), the equations of ai are derived as

follows:

ȧi = λiai + (ξ1a3
i + ξ2aia

2
j

+ξ3|ai|2ai + ξ4|aj |2ai + ξ5aia
2
j ) + fi (8)

where i = v, j = w, fv = ξ6kν2 sin νt, and i = w, j = v,
fw = 0. The constant coefficients ξ1,ξ2, · · · , ξ6 in equations
(8), are numerically determined as functions of α, β, γ and
Vs.

Letting av = hveiϕ/2 and aw = hweiϑ/2, separating the
real and imaginary parts of equation (8), and averaging
them by the period 2π/ωr under the following assumption:

ν ≡ ωr + σ, (|σ| � ωr) (9)
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whereωr is the linear natural frequency of the unstable sec-
ond mode in this paper.

Furthermore we define the phase difference Ω between
aw and av, and the phase difference η between Y0 and av,
respectively, as follows:

Ω = ϑ − ϕ, η = νt − ϕ (10)

Finally the autonomous equations governing hv,Ω, hw

and η are expressed as follows:

ḣv = −ωihv + (ξ4re + ξ5re)h3
v/4

+ (ξ4re + ξ5re cos 2Ω − ξ5im sin 2Ω)hvh
2
w/4

+ kω2
r (ξ6im cos η + ξ6re sin η) (11)

hvη̇ = hvσ − (ξ4im + ξ5im)h3
v/4

− (ξ4im + ξ5im cos 2Ω+ ξ5re sin 2Ω)hvh
2
w/4

+ kω2
r (ξ6re cos η − ξ6im sin η) (12)

ḣw = −ωihw + (ξ4re + ξ5re)h3
w/4

+ (ξ4re + ξ5re cos 2Ω + ξ5im sin 2Ω)hwh2
v/4 (13)

hvΩ̇ = {ξ5re sin 2Ω + ξ5im(cos 2Ω − 1)}h3
v/4

+ {ξ5re sin 2Ω − ξ5im(cos 2Ω − 1)}hvh
2
w/4

+ kω2
r (ξ6re cos η − ξ6im sin η) (14)

where ξ j = ξ jre + iξ jim ( j = 4, 5, 6).

4. THEORETICAL RESULT

4.1. THE CASE OF NON-FORCED EXCITATION

The transient time histories of hv, hw and Ω of nonpla-
nar flow-induced pipe vibration for κ=0, Vs=6.50, α=0.13,
β=0.24, γ=0.26, which are calculated numerically from
equations (11),(13) and (14), are shown in Figures 2(a) and
2(b). The initial values of hv, hw and Ω are 1×10−3, 1×10−3

and 2π/5, respectively. After some time, the values of hv

and hw converge to hnp = 0.783, and also the value of Ω
converges to Ωs = π/2. As a result, the steady-state pipe
motion in a horizontal plane at s=0.772 takes on a circu-
lar shape, as shown in Figure 2(c). The steady-state pipe
motion don’t depend on the initial conditions.

4.2. THE CASE OF FORCED EXCITATION

The transient time histories of hv, hw and η, as shown
in Figure 3(a) and (b), are obtained numerically from
equations (11) through (14) for κ=0.0077, σ=0.3, ν=16.0,
Vs=6.50, α=0.13, β=0.24, γ=0.26. The initial values of
hv, hw,Ω and η are 0.1, 0.1, 2π/5 and 1, respectively. Af-
ter some time, hv converges to hvs = 1.43, hw converges to
zero and η also converges to the constant value 5.01. Those
convergent values don’t depend on the initial conditions in
the same manner as the case of κ=0. As a result, the sta-
ble steady-state planar pipe motion in a horizontal plane at
s = 0.772 occurs, as shown in Figure 3(c).
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(a)Time histories of h  and hv w

(b)Time history of Ω

(c)The steady state pipe motion 
         in a horizontal plane
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Figure 2: Transient time histories of hv and hw and the
steady-state pipe motion in a horizontal plane without
forced excitation

5. EXPERIMENTS

The experiments were conducted with the silicone rub-
ber pipe of 12 mm external diameter, 7 mm internal diam-
eter and 518 mm length. The equivalent bending rigidity
EI is 0.01 N m2. The flow velocity Vs is 7.2 m/s. The val-
ues of α, β and γ were determined experimentally as 0.13,
0.26 and 20.6 respectively. The spatial displacements of the
flexible pipe were measured by the image processing sys-
tem which can be performed measurements of the marker
in three dimensional space, based on the images from two
CCD cameras.

The stable nonplanar vibration of the pipe was observed
at the flow velocity vs = 7.2 m/sec (Vs = 7.3), as shown in
Figure 4. Figure 4 shows the time histories of v and w, their
spectrum analyses and the pipe motions in a horizontal yz
plane at s = 400 mm (s∗ = 0.772). The steady-state non-
planar pipe vibration with the single mode, was observed
in the y-z plane as predicted in the theory.

Figure 5 is the experimental result in the case of the
forced excitation δY = 4 mm (k = 0.00772). The fre-
quency of the pipe vibration is equal to the frequency N of
the excitation, i.e. 2.26 Hz.

The lateral deflection v of the pipe is excited with the
single vibration mode, and the amplitude of v is 68.8 mm
(v∗ = 0.133). The amplitude of w is sufficiently small com-
pared with the amplitude of v. That is, there is almost a
steady-state planar motion of the pipe, as predicted in the
theory. The transition from the nonplanar motion to the
planar motion is different from the quenching phenomenon
which is easily predicted in the case of the planar flow-
induced vibration with forced excitation (Yoshizawa et al.,
1988).

471



v

w 0

0 0.1

0.1

-0.1

-0.1

(a)Time histories of h  and hv w

(b)Time history of η

(c)The steady state pipe motion 
         in a horizontal plane

0 100 200
t

h 
, h v
w

hv

wh

t
0 20 40 60 80

η

0

1

-1

-2

Figure 3: Transient time histories of hv and hw and the
steady-state pipe motion in a horizontal plane with forced
excitation

It is very interesting from the physical viewpoint that the
lateral deflection of the pipe w in zx plane is also reduced
by the forced excitation in yz plane.

6. CONCLUSION

We have studied the effect of forced excitation on the
nonplanar flow-induced vibration of a cantilevered pipe,
which is hung vertically with an end mass, from the view-
point of nonlinear dynamics. That is, the upper end of the
pipe is excited periodically in a horizontal plane. The fluid
velocity is slightly over the critical value.

First, it has been clarified numerically that the nonpla-
nar flow-induced pipe vibration is reduced to the planar
vibration in the case of forced excitation, under the con-
dition that the excitation frequency is nearly equal to the
frequency of the flow-induced pipe vibration. The lateral
deflection w of the pipe is reduced by the forced excitation
perpendicular to w.

Second, the spatial behaviors of the silicon rubber pipe
conveying water were observed quantitatively. As pre-
dicted in the theory, the plane pipe vibration has been ob-
served under the condition that the excitation frequency is
nearly equal to the self-excited frequency of the pipe, for
the case of the nonplanar flow-induced pipe vibration with-
out forced excitation .
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