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Abstract—In the paper, we demonstrate a geometric affield associated with a horizontal one-form on the tangent
proach to nonholonomic constrained systems with a noundle. Finally, we formulate dynamics of a nonconserva-
conservative force field based on Lagrangian formalisniive mechanical system with honholonomic constraints by
We first illustrate a Lagrangian system for a conservativeagrange-d’Alembert principle.
mechanical system in the context of variational principle
of Hamilton and then show that a mechanical system with v/ariational Principle of Hamilton
nonholonomic constraints can be formulated on the tangent
bundle of a configuration manifold by using Lagrange mul2.1. Configuration Manifold and Tangent Bundle

tipliers. We also investigate a nonconservative force field First d i tric seti fL an
as a horizontal one-form on the tangent bundle and we fi- ' >~ W€ d€SCTbe a geometric Setting ot Lagrangian for-

nally demonstrate an intrinsic formulation of a nonconselr-na“Sm for a conservative mechanical system in the con-

vative mechanical system with nonholonomic constraintgext of var!at|onal prln_C|pIe of Hamilton. Let us con_S|der a
by Lagrange-d’Alembert principle. conservative mechanical system whose configuration space

is given by ann dimensional manifold and letq?, i =

1,...,n be local coordinates fdp. Letq(t), a <t < bbea

1. Introduction motion of the mechanical system and hence generalized ve-
locities are locally represented by= >"" | v%(8/9q"),

Multibody systems such as robots, artificial satellites an@hered/dq ', ..., 9/dq™ form a basis of the tangent space

vehicles are, in general, nonlinear mechanical systems wifh @ at each poing. Let TQ = U,eqT,Q be the tan-

constraints. Specifically, dynamics of nonholonomic megent bundle of), which implies avelocity phase space.

chanical systems is no doubt a crucial problem in classk-€t (¢,v) be local coordinates fof'Q). Furthermore, let

cal mechanics [3]. In analysis and design of such nork; @ be the cotangent space at each pqirtnd7*Q) =

holonomic mechanical systems, geometric mechanics hascq7;, @ be the cotangent bundle &f, which denotes a

played an essential role since early 90's [2]. The fundd?hase space. L€y, p) be local coordinates faF Q.

mental theory of geometric mechanics based on differential )

geometry was developed in late 60’s in the field of mathe?-2- Euler-Lagrange Equations

matics [1], where the fundamentals of Lagrangian formal- |, order to formulate a conservative mechanical system

ism on the tangent bundle as well as Hamiltonian formal;seq on the Lagrangian formalism, we begin with the vari-
ism on the cotangent bundle associated with a configurgsional principle of Hamilton. Le® be ann dimensional
tion manifold have been common among researchers in thes hifold and letZ. be a Lagrangian of'Q. For an arbi-

field. In the paper, we illustrate Lagrangian formalism fo'irary pointg € Q, the LagrangiarL(q, v) can be regarded
a nonconservative mechanical system with nonholonomig 5 function o7, Q. If the condition
constraints specifically based on geometric mechanics by

not only giving intrinsic expressions but also using local de { >’L } )
coordinates for applications. To do so, we first show the vt oI
fundamental idea of Lagrangian formalism for a CONSeNVas satisfied, therl. is calledregular.
tive mechanical system on the tangent bundle in the Contﬁ)éﬁning two pointsg; andgs
of variational principle of Hamilton. Second we demon~R such that

strate the intrinsic formulation of a Lagrangian system by . )
introducing Lagrangian forms and the Legendre transfor§2(¢1, @2, [a,b]) = {q : [a,0] — Q [ gis aC” curve,
mation, where we primarily investigate the case of regu- q(a) = q1,q(b) = ¢}
lar Lagrangians. Then, we study kinematical constraints
given by a distribution on a configuration manifold, which
will be considered as a distribution on the second tangent b ]
bundle and we also demonstrate a nonconservative force S(q) = /a L (q(t),4(t)) dt,
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Define a path space
in @ with time intervalja, b] C

Define an action functiona : Q(q1, g2, [a,b]) — R by



whereq = dgq/dt. Then, we have the variational principle 3.2. Lagrangian One-Form and Two-Form

of Hamilton, which is given by the following theorem.

Theorem 2.1. The curveg, : [a,b] — @ joining g¢;

Given a hyperregular Lagrangidn Since the cotangent
bundleT*@ of @ has naturally the canonical symplectic

qo(a) and g = ¢o(b) satisfies the Euler-Lagrange equa-one-form© and two-form(2. Then, by the diffeomorphism

tions

d (LN oL
dt \o¢' ) 9q'’

if and only if the action functionab : (g1, g2, [a,b]) —

R is critical at the pointgg, that is,

b
5 / Liqo()do(£))dt = 0.

The variation of the action functiond is denoted by

d

de

a
de

ds(q) v S(qc)

e=0

b
/ Lq(t), ()t
e=0Ja

and hence we have

FL : TQ — T*Q, we can define a one-fortd; and a
two-form Q;, onT'Q such that

©r = (FL)*® and Qp = (FL)*Q,

each of which is called the Lagrangian one-form and the
Lagrangian two-form. By the hyperregularity of the La-
grangianL, Qy, is symplectic. Sinc& = —dO holds and

d commutes with the pull-back, we have

Qp =—-dor.

The coordinate expression of the Lagrangian one-férm
is given by
while the Lagrangian two-forrfy, is locally denoted by

O

b 0L . , 0%L
- 7(1 ¢ d J n n
L ovtdgd ¢ Mg+ ovtovI

dqt A dv?.

b
oL d oL\ , oL ,
dG(q)-v—/a <6qi_dt8q'i>vdt+8qiv

a

Keeping the endpoints fixed, as the stationary conditio1r;he Lagrangian two-fornf2,, is represented by a skew-

d&(q) - v = 0 satisfies for albb € T,Q(q1, g2, [a, b]), we Symmeiric matrix such that

obtain the Euler-Lagrange equations 2L 2L 92L
L d /8L _ | ovidg  dwidg  dvidvi
0 —— a.” =0. 2 2L
gt dt \ 9¢* 0

 Oviowi

Since we consider the case tHats regular,0*L/0v¢9v’
is nondegenerate and herieg is also nondegenerate.

3. Lagrangian Forms on Tangent Bundle

3.1. Legendre Transformation

Let L : TQ — R be a Lagrangian and recall the fiber4. Lagrangian Systems
derivativeFL : TQ — T*Q is defined by . )
4.1. Lagrangian Vector Field
d

FL(v) - w= —
(v) - w=—

L(v + ew),
e=0

Define a functiomd : T'QQ — R called an action by
wherev, w € T,Q, andFL(v) - w is the derivative ofL A(v) =FL(v) v,

atv along the fibefl,,Q in the directionw. The mapFL :  \yherey ¢ T,Q. Further, define an energy by
TQ — T*Q is fiber-preserving and hence it maps the fiber
T,Q to the fiberZ,; Q). The fiber derivative of. is locally
represented by

o . OL
IF‘L(qz’,UI) = <qz7 W) .

E=A—-1L.

The coordinate expressions of the actidrand the energy
E are respectively represented by

oL -
A(q',v") Y, E(q',v")

The mapFL : TQ — T*Q is called theLegendre trans- T o =50’ L{g",v").
formwhich is locally denoted by Given a vector fieldXg on T'Q, if Xg satisfies the La-
oL grangian condition
bi = -
ov?

o QL (v)(Xp(v),w) =dE(@v) - w
When the Legendre transforifl : TQQ — T*@Q is dif-

feomorphism, the Lagrangiahis said to benyperregular for all v € T,Q) andw € T, 7Q, thenXg is said to be a
Lagrangian. Lagrangian vector fielar aLagrangian systerfor L.
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Given a Lagrangian vector field g : TQQ — TTQ and
let c(t) = (q(t),v(t)), t € [a,b] be an integral curve of
Xg. Then, the energy is conserved such that

ﬁE(c(f)) =dE(c(t)) - Xg(c(t))

dt
= Qp(c(t) (Xe(ct)), Xp(c(t)) =0,

where ¢é(t) Xg(c(t)) and we utilized the skew-
symmetric property of2;,. Thus, we have an intrinsic ex-
pression of the Lagrangian system as

ix, Q, = dE. 1)

4.2. Second-Order Vector Field
Let us consider a submanifold @fI'Q) such that
TPQ ={w e TTQ | Tro(w) = trq(w)},

whererg : TQ) — @ is a canonical projection. In local co-
ordinates, sincev = (g, v, dq,év) € TTQ, an element of
the submanifold’® @ satisfies the condition = dq. So,

if a vector field Xz onT'Q satisfiesI'rg o Xg = id, Xg

is said to be aecond-order vector field. In other words, a

second-order vector field is defineds : T7Q — T2 Q.
Letc(¢) be an integral curve ok and let(rg oc)(¢) be an
base integral curve eft). The integral curve oK i can be
uniquely determined by the base integral cufwg o c)(t)
with a given initial condition inl’Q.

Theorem 4.1. Let Xg be a Lagrangian vector field for
L : TQ — R. Using local coordinategq, v) for TQ,
the integral curve(q(t),v(t)) of Xy satisfies the Euler-
Lagrange equations

vi, L
Tt

If the Lagrangian is regular, that i€, is nondegenerate,
then Xz is to be second-order, and thus we have

dg’ B
dt

oL
ovt

or
0q*’

1=1,... (2)

, 1.

. . (OL O?L .
i = MY ), ii=1,...
q <an 9905 4 ) Gy =1....n, (3)
where .
y 0’L 1~
1] —
(7] [aqiad-j] '

Notice thatg’(¢) is a base integral curve of .

5. Constraints and Virtual Work Principle

5.1. Constraint Distributions

wherew”,r = 1,...,m are independent one-forms locally
denoted by

n
wT(Q) = Za:(Q)dqza r= 1a" c,my m < n.
1=1

If any vector fieldX andY on Q satisfies|X,Y] € D,
then D is completely integrable and constraints are said to
be holonomic, otherwise nonholonomic. The motion of a
mechanical system is said to be constrainedf € D,
satisfies for each time < ¢t < b. _

Using the mapy : TQ) — @, the distributionD onT'Q)
is defined by

D = (Trq) (D) C TTQ,
which is locally described by
D={V eTTQ| ((rq)"w", V) = 0}.
Then, restrictingD to D C T'Q, one can obtain
A=DNTD C TpTQ.
Note that an annihilatofA° of A is defined by
A° ={aeTpTQ| (o,w) =0forall w € A},

where we note thatrg)*w”, r = 1, ..., m form a basis of
the annihilatorA® such thaty = >~ | p, (70)*w".

5.2. Force Field and Virtual Work Principle

Let g : TQ — @ be a canonical projection. A force
field is a fiber-preserving map' : 7Q — T7%Q over the
identity, which induces a horizontal one-forfng)*F' on
TQ such that

(1) F(g,v) - w = (F(g,v), Tre(w)),

where (¢,v) € TQ andw € T(,,,TQ. In local co-
ordinates, a horizontal one-forifrg)*F is denoted by
(tQ)*F (q,v,F,0) andw € T, TQ is given by
w = (q,v,dq, 6v). So, we havd g (w) = (g, dq). Hence,
the force fieldF is locally described by

F((LU) = ZFi(qav) dxz
i=1

If kinematical constraints are imposed on mechanical
systems, whether holonomic or nonholonomic, we need to
consider a constraint force field. The virtual work principle
asserts that a constraint foré& associated with the con-
straint distribution in equation (4) takes its valuelij for
eachqg € @, which is represented such that

(F€,0q) = (10)"F°-w =0,

Kinematical constraints are represented by a constraifheredq = Tro(w) € Dy, F© € Dg andw € A. Hence,

distribution D C T'Q on a configuration manifold). The
distribution D is defined by, at each e Q,

Dy = {vg € TyQ[{w"(q), v4) = Oforallw™(q) }, (4)

we have

(1Q)" F* = ur(rq)"w" € A°. (5)
r=1
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6. Lagrange-d’Alembert Principle Thus, we derive the Lagrange-d’Alembert equations for

_ ) ) mechanical systems with an external force by employing
6.1. Equations of Motion for Nonholonomic Systems | a3grange multipliers:, such that

The Lagrange-d’Alembert Principle describes that equa- d oL oL m
i i A A T’r F'€7':17"'77
tions of motion can be formulated by a97  0g ;M a; +F;, 1 n
, —
5/ L(qg,q)dt =0, (6) which combines withn kinematical constraints. The ex-
a ternal force fieldF® : TQ — T*@Q induces a horizontal
where variationsiq(t) of the curveg(t) is so chosen that one-form on7'Q as
dq(t) € Dy foreacht € [a,b] with dg(a) = dq(b) = 0. e e
In the above, we take variatiodg(t) before imposing the (rQ)"F*(g,v) - w = (F(q,v), Tq(w)) ,
constraints. In other words, the constraints are notimposeﬁhere(q’v) € DcCTQandw € A C Ti,.,»TQ, and
on the family of curves defining the variation, but the varihence the intrinsic expression of the Lagrange-d’Alembert

ations are chosen such thaf(t) € D, satisfies. The equations of motion is denoted by
Lagrange-d’Alembert principle in equation (6) becomes

OL _dOLY .. - ixe Qp —dE =) (1) w" + py(1q) " F*.
o¢ ~diag) T T =1

In the above, equations of motion together wittkinemat-
iFaI constraints consist of a complete set of system equa-
Yons for a nonholonomic mechanical system with a non-

wheredq(t) is satisfiediq(t) € D,y for eacht € [a, b].
Thus, we obtain the Lagrange-d’Alembert equations

motion as conservative external force field.
OL d oL &
=4 a; =0,i=1,---,n. (8 .
dq¢t  dt d¢t ;MT ’ ® 7. Conclusions
Note that the Lagrange-d’Alembert equations accompany We demonstrated a geometric approach to mechani-
with m kinematical constraints: cal systems with nonholonomic constraints based on La-
n grangian formalism in the context of variational principles.
Za; d¢ =0, r=1,---,m; m<n. We first formulated Euler-Lagrange equations for a con-
i=1 servative system with no constraints and then investigated

Recall the intrinsic expression of Euler-Lagrange equa{___agrange—d A!ehmber'cr]e:quat|o_r1$ of motpn foT_a conserva-
tions is denoted by equation (1) and hence the intrinsic e¥Y€ SYStem with nonholonomic constraints. Last we con-

pression of Lagrange-d’Alembert principle in equation (7)s|dereq a nonholonomic mechanical system with a noncon-
servative force on the tangent bundle.

is given by
(iXE QL - dE) W = 0,
wherew € A. Then, the intrinsic expression of theAcknowIedgments
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