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Abstract—In the paper, we demonstrate a geometric ap-
proach to nonholonomic constrained systems with a non-
conservative force field based on Lagrangian formalism.
We first illustrate a Lagrangian system for a conservative
mechanical system in the context of variational principle
of Hamilton and then show that a mechanical system with
nonholonomic constraints can be formulated on the tangent
bundle of a configuration manifold by using Lagrange mul-
tipliers. We also investigate a nonconservative force field
as a horizontal one-form on the tangent bundle and we fi-
nally demonstrate an intrinsic formulation of a nonconser-
vative mechanical system with nonholonomic constraints
by Lagrange-d’Alembert principle.

1. Introduction

Multibody systems such as robots, artificial satellites and
vehicles are, in general, nonlinear mechanical systems with
constraints. Specifically, dynamics of nonholonomic me-
chanical systems is no doubt a crucial problem in classi-
cal mechanics [3]. In analysis and design of such non-
holonomic mechanical systems, geometric mechanics has
played an essential role since early 90’s [2]. The funda-
mental theory of geometric mechanics based on differential
geometry was developed in late 60’s in the field of mathe-
matics [1], where the fundamentals of Lagrangian formal-
ism on the tangent bundle as well as Hamiltonian formal-
ism on the cotangent bundle associated with a configura-
tion manifold have been common among researchers in the
field. In the paper, we illustrate Lagrangian formalism for
a nonconservative mechanical system with nonholonomic
constraints specifically based on geometric mechanics by
not only giving intrinsic expressions but also using local
coordinates for applications. To do so, we first show the
fundamental idea of Lagrangian formalism for a conserva-
tive mechanical system on the tangent bundle in the context
of variational principle of Hamilton. Second we demon-
strate the intrinsic formulation of a Lagrangian system by
introducing Lagrangian forms and the Legendre transfor-
mation, where we primarily investigate the case of regu-
lar Lagrangians. Then, we study kinematical constraints
given by a distribution on a configuration manifold, which
will be considered as a distribution on the second tangent
bundle and we also demonstrate a nonconservative force

field associated with a horizontal one-form on the tangent
bundle. Finally, we formulate dynamics of a nonconserva-
tive mechanical system with nonholonomic constraints by
Lagrange-d’Alembert principle.

2. Variational Principle of Hamilton

2.1. Configuration Manifold and Tangent Bundle

First, we describe a geometric setting of Lagrangian for-
malism for a conservative mechanical system in the con-
text of variational principle of Hamilton. Let us consider a
conservative mechanical system whose configuration space
is given by ann dimensional manifoldQ and letq i, i =
1, ..., n be local coordinates forQ. Letq(t), a ≤ t ≤ b be a
motion of the mechanical system and hence generalized ve-
locities are locally represented byv =

∑n
i=1 v i(∂/∂q i),

where∂/∂q 1, ..., ∂/∂q n form a basis of the tangent space
TqQ at each pointq. Let TQ = ∪q∈QTqQ be the tan-
gent bundle ofQ, which implies avelocity phase space.
Let (q, v) be local coordinates forTQ. Furthermore, let
T ∗

q Q be the cotangent space at each pointq andT ∗Q =
∪q∈QT ∗

q Q be the cotangent bundle ofQ, which denotes a
phase space. Let(q, p) be local coordinates forT ∗Q.

2.2. Euler-Lagrange Equations

In order to formulate a conservative mechanical system
based on the Lagrangian formalism, we begin with the vari-
ational principle of Hamilton. LetQ be ann dimensional
manifold and letL be a Lagrangian onTQ. For an arbi-
trary pointq ∈ Q, the LagrangianL(q, v) can be regarded
as a function onTqQ. If the condition

det
[

∂2L

∂vi∂vj

]
6= 0

is satisfied, thenL is calledregular. Define a path space
joining two pointsq1 andq2 in Q with time interval[a, b] ⊂
R such that

Ω(q1, q2, [a, b]) = {q : [a, b] → Q | q is aC2 curve,

q(a) = q1, q(b) = q2}.

Define an action functionalS : Ω(q1, q2, [a, b]) → R by

S(q) =
∫ b

a

L (q(t), q̇(t)) dt,
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whereq̇ = dq/dt. Then, we have the variational principle
of Hamilton, which is given by the following theorem.

Theorem 2.1. The curveq0 : [a, b] → Q joining q1 =
q0(a) and q2 = q0(b) satisfies the Euler-Lagrange equa-
tions

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
,

if and only if the action functionalS : Ω(q1, q2, [a, b]) →
R is critical at the pointq0, that is,

δ

∫ b

a

L(q0(t), q̇0(t))dt = 0.

The variation of the action functionalS is denoted by

dS(q) · v =
d

dε


ε=0

S(qε)

=
d

dε


ε=0

∫ b

a

L(qε(t), q̇ε(t))dt

and hence we have

dS(q) · v =
∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
vidt +

∂L

∂q̇i
vi

∣∣∣∣b
a

.

Keeping the endpoints fixed, as the stationary condition
dS(q) · v = 0 satisfies for allv ∈ TqΩ(q1, q2, [a, b]), we
obtain the Euler-Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0.

3. Lagrangian Forms on Tangent Bundle

3.1. Legendre Transformation

Let L : TQ → R be a Lagrangian and recall the fiber
derivativeFL : TQ → T ∗Q is defined by

FL(v) · w =
d

dε


ε=0

L(v + ε w),

wherev, w ∈ TqQ, andFL(v) · w is the derivative ofL
at v along the fiberTqQ in the directionw. The mapFL :
TQ → T ∗Q is fiber-preserving and hence it maps the fiber
TqQ to the fiberT ∗

q Q. The fiber derivative ofL is locally
represented by

FL(qi, vi) =
(

qi,
∂L

∂vi

)
.

The mapFL : TQ → T ∗Q is called theLegendre trans-
formwhich is locally denoted by

pi =
∂L

∂vi
.

When the Legendre transformFL : TQ → T ∗Q is dif-
feomorphism, the LagrangianL is said to behyperregular
Lagrangian.

3.2. Lagrangian One-Form and Two-Form

Given a hyperregular LagrangianL. Since the cotangent
bundleT ∗Q of Q has naturally the canonical symplectic
one-formΘ and two-formΩ. Then, by the diffeomorphism
FL : TQ → T ∗Q, we can define a one-formΘL and a
two-formΩL onTQ such that

ΘL = (FL)∗Θ and ΩL = (FL)∗Ω,

each of which is called the Lagrangian one-form and the
Lagrangian two-form. By the hyperregularity of the La-
grangianL, ΩL is symplectic. SinceΩ = −dΘ holds and
d commutes with the pull-back, we have

ΩL = −dΘL.

The coordinate expression of the Lagrangian one-formΘL

is given by

ΘL =
∂L

∂vi
dqi,

while the Lagrangian two-formΩL is locally denoted by

ΩL =
∂2L

∂vi∂qj
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj .

The Lagrangian two-formΩL is represented by a skew-
symmetric matrix such that

ΩL =

 ∂2L

∂vi∂qj
− ∂2L

∂vj∂qi

∂2L

∂vi∂vj

− ∂2L

∂vi∂vj
0

 .

Since we consider the case thatL is regular,∂2L/∂vi∂vj

is nondegenerate and henceΩL is also nondegenerate.

4. Lagrangian Systems

4.1. Lagrangian Vector Field

Define a functionA : TQ → R called an action by

A(v) = FL(v) · v,

wherev ∈ TqQ. Further, define an energy by

E = A− L.

The coordinate expressions of the actionA and the energy
E are respectively represented by

A(qi, vi) =
∂L

∂vi
vi, E(qi, vi) =

∂L

∂vi
vi − L(qi, vi).

Given a vector fieldXE on TQ, if XE satisfies the La-
grangian condition

ΩL(v)(XE(v), w) = dE(v) · w

for all v ∈ TqQ andw ∈ TvTQ, thenXE is said to be a
Lagrangian vector fieldor aLagrangian systemfor L.
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Given a Lagrangian vector fieldXE : TQ → TTQ and
let c(t) = (q(t), v(t)), t ∈ [a, b] be an integral curve of
XE . Then, the energyE is conserved such that

d

dt
E(c(t)) = dE(c(t)) ·XE(c(t))

= ΩL(c(t)) (XE(c(t)), XE(c(t))) = 0,

where ċ(t) = XE(c(t)) and we utilized the skew-
symmetric property ofΩL. Thus, we have an intrinsic ex-
pression of the Lagrangian system as

iXE
ΩL = dE. (1)

4.2. Second-Order Vector Field

Let us consider a submanifold ofTTQ such that

T (2)Q = {w ∈ TTQ | TτQ(w) = τTQ(w)},

whereτQ : TQ → Q is a canonical projection. In local co-
ordinates, sincew = (q, v, δq, δv) ∈ TTQ, an element of
the submanifoldT (2)Q satisfies the conditionv = δq. So,
if a vector fieldXE on TQ satisfiesTτQ ◦ XE = id, XE

is said to be asecond-order vector field. In other words, a
second-order vector field is defined asXE : TQ → T (2)Q.
Let c(t) be an integral curve ofXE and let(τQ◦c)(t) be an
base integral curve ofc(t). The integral curve ofXE can be
uniquely determined by the base integral curve(τQ ◦ c)(t)
with a given initial condition inTQ.

Theorem 4.1. Let XE be a Lagrangian vector field for
L : TQ → R. Using local coordinates(q, v) for TQ,
the integral curve(q(t), v(t)) of XE satisfies the Euler-
Lagrange equations

dqi

dt
= vi,

d

dt

(
∂L

∂vi

)
=

∂L

∂qi
, i = 1, . . . , n. (2)

If the Lagrangian is regular, that is,ΩL is nondegenerate,
thenXE is to be second-order, and thus we have

q̈j = M ij

(
∂L

∂qi
− ∂2L

∂qj∂q̇i
q̇j

)
, i, j = 1, . . . , n, (3)

where [
M ij

]
=

[
∂2L

∂qi∂q̇j

]−1

.

Notice thatqi(t) is a base integral curve ofXE .

5. Constraints and Virtual Work Principle

5.1. Constraint Distributions

Kinematical constraints are represented by a constraint
distributionD ⊂ TQ on a configuration manifoldQ. The
distributionD is defined by, at eachq ∈ Q,

Dq = {vq ∈ TqQ| 〈ωr(q), vq〉 = 0 for all ωr(q) }, (4)

whereωr, r = 1, . . . ,m are independent one-forms locally
denoted by

ωr(q) =
n∑

i=1

ar
i (q) dqi, r = 1, · · · ,m; m < n.

If any vector fieldX andY on Q satisfies[X, Y ] ∈ D,
thenD is completely integrable and constraints are said to
be holonomic, otherwise nonholonomic. The motion of a
mechanical system is said to be constrained ifq̇(t) ∈ Dq(t)

satisfies for each timea ≤ t ≤ b.
Using the mapτQ : TQ → Q, the distributionD̃ onTQ

is defined by

D̃ = (TτQ)−1(D) ⊂ TTQ,

which is locally described by

D̃ = {V ∈ TTQ | 〈(τQ)∗ωr, V 〉 = 0}.

Then, restrictingD̃ to D ⊂ TQ, one can obtain

∆ = D̃ ∩ TD ⊂ TDTQ.

Note that an annihilator∆◦ of ∆ is defined by

∆◦ = {α ∈ T ∗
DTQ | 〈α, w〉 = 0 for all w ∈ ∆},

where we note that(τQ)∗ωr, r = 1, ...,m form a basis of
the annihilator∆◦ such thatα =

∑m
r=1 µr(τQ)∗ωr.

5.2. Force Field and Virtual Work Principle

Let τQ : TQ → Q be a canonical projection. A force
field is a fiber-preserving mapF : TQ → T ∗Q over the
identity, which induces a horizontal one-form(τQ)∗F on
TQ such that

(τQ)∗F (q, v) · w = 〈F (q, v), T τQ(w)〉 ,

where (q, v) ∈ TQ and w ∈ T(q,v)TQ. In local co-
ordinates, a horizontal one-form(τQ)∗F is denoted by
(τQ)∗F = (q, v, F, 0) and w ∈ T(q,v)TQ is given by
w = (q, v, δq, δv). So, we haveTτQ(w) = (q, δq). Hence,
the force fieldF is locally described by

F (q, v) =
n∑

i=1

Fi(q, v) dxi.

If kinematical constraints are imposed on mechanical
systems, whether holonomic or nonholonomic, we need to
consider a constraint force field. The virtual work principle
asserts that a constraint forceF c associated with the con-
straint distribution in equation (4) takes its value inD◦

q for
eachq ∈ Q, which is represented such that

〈F c, δq〉 = (τQ)∗F c · w = 0,

whereδq = TτQ(w) ∈ Dq, F c ∈ D◦
q andw ∈ ∆. Hence,

we have

(τQ)∗F c =
m∑

r=1

µr(τQ)∗ωr ∈ ∆◦. (5)
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6. Lagrange-d’Alembert Principle

6.1. Equations of Motion for Nonholonomic Systems

The Lagrange-d’Alembert Principle describes that equa-
tions of motion can be formulated by

δ

∫ b

a

L(q, q̇) dt = 0, (6)

where variationsδq(t) of the curveq(t) is so chosen that
δq(t) ∈ Dq(t) for eacht ∈ [a, b] with δq(a) = δq(b) = 0.
In the above, we take variationsδq(t) before imposing the
constraints. In other words, the constraints are not imposed
on the family of curves defining the variation, but the vari-
ations are chosen such thatδq(t) ∈ Dq(t) satisfies. The
Lagrange-d’Alembert principle in equation (6) becomes(

∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi = 0, (7)

whereδq(t) is satisfiedδq(t) ∈ Dq(t) for eacht ∈ [a, b].
Thus, we obtain the Lagrange-d’Alembert equations of
motion as

∂L

∂qi
− d

dt

∂L

∂q̇i
+

m∑
r=1

µra
r
i = 0, i = 1, · · · , n. (8)

Note that the Lagrange-d’Alembert equations accompany
with m kinematical constraints:

n∑
i=1

ar
i dqi = 0, r = 1, · · · ,m; m < n.

Recall the intrinsic expression of Euler-Lagrange equa-
tions is denoted by equation (1) and hence the intrinsic ex-
pression of Lagrange-d’Alembert principle in equation (7)
is given by

(iXE
ΩL − dE) · w = 0,

where w ∈ ∆. Then, the intrinsic expression of the
Lagrange-d’Alembert equations (8) is to be

iXE
ΩL − dE =

m∑
r=1

µr(τQ)∗ωr.

6.2. Mechanical Systems with External Forces

Let F e : TQ → T ∗Q be a nonconservative external
force field. The integral Lagrange-d’Alembert principle is
represented by

δ

∫ b

a

L(q, q̇) dt +
∫ b

a

F e δq dt = 0, (9)

where we choose variationsδq(t) of the curveq(t) such
that δq(t) ∈ Dq(t). Keeping the endpoints fixed, the first
term of the left-hand side of equation (9) is transformed
into

δ

∫ b

a

L(q, q̇) dt =
∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi.

Thus, we derive the Lagrange-d’Alembert equations for
mechanical systems with an external force by employing
Lagrange multipliersµr such that

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
r=1

µra
r
i + F e

i , i = 1, · · · , n,

which combines withm kinematical constraints. The ex-
ternal force fieldF e : TQ → T ∗Q induces a horizontal
one-form onTQ as

(τQ)∗F e(q, v) · w = 〈F e(q, v), T τQ(w)〉 ,

where(q, v) ∈ D ⊂ TQ andw ∈ ∆ ⊂ T(q,v)TQ, and
hence the intrinsic expression of the Lagrange-d’Alembert
equations of motion is denoted by

iXE
ΩL − dE =

m∑
r=1

µr(τQ)∗ωr + µr(τQ)∗F e.

In the above, equations of motion together withm kinemat-
ical constraints consist of a complete set of system equa-
tions for a nonholonomic mechanical system with a non-
conservative external force field.

7. Conclusions

We demonstrated a geometric approach to mechani-
cal systems with nonholonomic constraints based on La-
grangian formalism in the context of variational principles.
We first formulated Euler-Lagrange equations for a con-
servative system with no constraints and then investigated
Lagrange-d’Alembert equations of motion for a conserva-
tive system with nonholonomic constraints. Last we con-
sidered a nonholonomic mechanical system with a noncon-
servative force on the tangent bundle.
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