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Abstract—This paper presents a novel characterization
of singular values of nonlinear operators. Although eigen-
value and spectrum analysis for nonlinear operators has
been studied by many researchers in mathematics litera-
ture, singular value analysis has not been investigated so
much. In this paper, a novel framework of singular value
analysis is proposed which is closely related to the opera-
tor gain. The proposed singular value analysis is based on
the eigenvalue analysis of a special class of nonlinear op-
erators called differentially self-adjoint. Some properties
of those operators are clarified which are natural general-
ization of the linear case results. A sufficient condition for
the existence of singular values is provided. Furthermore,
application of the proposed method to singular value anal-
ysis of nonlinear Hankel operators, which play important
roles in nonlinear balanced realization and model reduc-
tion, demonstrates its effectiveness. The proposed analysis
tools are expected to play an important role in nonlinear
control systems theory as in the linear case.

1. Introduction

Eigenvalue analysis with the related techniques is one of
the most beneficial tools in many scientific research fields.
In particular, eigenvalue and singular value analysis plays a
crucial role in linear control systems theory. It is quite nat-
ural to consider how to generalize these tools for nonlinear
operators, whereas they are originally used for linear oper-
ators. In fact, there are several papers on eigenvalue and
spectrum analysis for nonlinear operators in mathematics
literature [3, 12, 10, 1].

Let us consider a Banach space X with a field K and
a linear operator A : X — X. Its eigenvalue A and the
corresponding eigenvector x are obtained by solving

Ax=Ax, 1€K, x(#0)eX.

Here A rendering A — Al non-invertible is called a spectrum
of A. The nonlinear version of this eigenvalue problem is
formulated in a similar way as follows. Consider a nonlin-
ear operator f : Xo — X with Xy C X. Its eigenvalue A and
the corresponding eigenvector x are obtained by solving

f)=4ax, 1€K, x(#0)eX

Here A rendering f — Al non-invertible is called a spectrum
of f. The above nonlinear eigenvalue problem is a natural
generalization of the linear case.

On the other hand, nonlinear versions of singular value
problems were not investigated so much. This is because
the definition of a nonlinear version of adjoint operators
are not clear. In the linear case, singular vectors x’s of a
linear operator A are characterized by the eigenvectors of
A*A with A* the adjoint of A, and the corresponding singu-
lar values are given by square roots of the eigenvalues of
A*A. See e.g. [14]. Although there are some research on
adjoints of nonlinear operators [2, 4, 13, 9], its direct ap-
plication does not derive any framework for singular value
analysis so profitable as that in the linear case.

The objective of this paper is to provide a natural defini-
tion of singular values of nonlinear operators and to clarify
some of their properties. First of all, recall that singular val-
ues in the linear case has a close relationship to the operator
gain. A new definition of singular values of nonlinear op-
erators is proposed based on their gain analysis. Then it is
shown that thus defined singular values can be calculated
by solving a special class of nonlinear eigenvalue problems
with respect to a differentially self-adjoint operator which
is a nonlinear counterpart of a self-adjoint operator in the
linear case. Some of their properties related to the existence
of singular values are clarified. Furthermore, the proposed
method is applied to singular value analysis of nonlinear
Hankel operators which play important roles in nonlinear
balanced realization and model reduction.

In this paper, K € {R,C} denotes a field where R and
C denote the space of real numbers and that of complex
numbers, respectively. The symbol N denotes the space of
natural numbers. The operators d(-) and d(-) denote Fréchet
derivative (for conventional operators) and exterior deriva-
tive (for differential forms), respectively, and the word ‘dif-
ferentiable’ stands for ‘Fréchet differentiable’. The sym-
bols Re(x) and Im(x) with a complex number x € C de-
note its real part and the imaginary part, respectively. The
product {-, -) denotes the inner product for the correspond-
ing Hilbert space with the field K. The symbols S, and D,
denote a sphere S,(X) := {x € X | ||x]| = r} and a disk
D.(X) := {x € X | ||x]| £ r}, respectively. The symbol T, M
denotes the tangent space of M at x. All proofs are omitted
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for the reason of space. Please contact the author to obtain
them.

2. Singular values of nonlinear operators

First of all, recall the definition of singular values in the
linear case in order to show the line of thinking in the non-
linear case. In the linear case, singular values and singular
vectors of a linear (compact) operator A : X — Y with
Hilbert spaces X and Y are characterized by the eigenvalue
problem of A*A : X —» X

A*Ax=2Ax, A€k, x(#0)eX. )
Here the solution x is called a (right) singular vector of A.
The eigenvalue A is always real and non-negative because
A*A is self-adjoint and positive semi-definite. So the corre-
sponding singular value can be defined by

=Va (— M). ®)

[1x]]

Singular values are important because it characterizes the
operator gain by

llAx]| llAx]|
Al := sup ~—= = T

= =sup o. 3)
o I i P

How can we define singular values for nonlinear opera-
tors? Recall also that, when x is a singular vector corre-
sponding to a nonzero singular value, then it is a critical
point of the square of the input-output ratio ||Ax|[?/||x||* un-
der the constraint x € S1(X) [14], that is,

(IIAJCII2

1[I

)(dx) =0, Vdx s.t. (x,dx) € T,S1(X).

Here we adopt this relationship as the starting point to de-
fine singular vectors of nonlinear operators. Consider a
nonlinear operator g : Xo — Y with an open set X C X
containing 0. Take an arbitrary positive constant r > 0
and consider a similar problem finding critical points of
the square of the input-output ratio under a constraint x €
S,(X) N Xo.

||g(x>||2)

d dx)=0

( w4

Vdx st (ndn) e TS, NX). @)

Here an additional parameter r is introduced because the
input-output ratio of a nonlinear operator varies according
to the input magnitude r, differently from the linear case.

In the nonlinear case, the singular vectors satisfying
(4) is characterized by the following nonlinear eigenvalue
problem.

Theorem 1 Consider Hilbert spaces X and Y with a field
K, and a bounded nonlinear operator g : Xo — Y with

an open set Xy satisfying 0 € Xo C X. Suppose that g is
differentiable. Then x is a solution of (4) if and only if it
satisfies

(dg(x)'g(x)=Ax, A€R, x(#0) € X. ®)

This property motivates us to characterize singular val-
ues and singular vectors of nonlinear operators as follows.

Definition 1 Consider Hilbert spaces X and Y with a field
K, and a differentiable bounded nonlinear operator g :
Xo — Y with an open set X, satisfying 0 € Xp € X. An
eigenvector of the operator x — (dg(x))*g(x) correspond-
ing to a real eigenvalue, that is, x € Xy satisfying (5) is
called a singular vector of g and the corresponding input-
output ratio defined by

_ llg&)Il
o =

[l

with the singular vector x is called a singular value of g.

Note that Equation (5) is a natural nonlinear generaliza-
tion of the singular value problem in the linear case (1).
The reason why we adopt the second equation of (2) as the
definition of singular values of nonlinear operators instead
of the first one, is because A in (5) can be negative. Further-
more, this definition yields the property

o g
llgll == sup =—=— =
xeXo |1l

as in the linear case (3), because the input maximizing the
input-output ratio arg sup(||g(x)||/||x|]) has to satisfy Equa-
tion (4). Namely, nonlinear singular values are also closely
related to the operator gain.

Remark 1 The author has provided a similar definition of
singular values for nonlinear Hankel operators in [5]. This
definition works quite nicely for Hankel operators, and
nonlinear balanced realization and model reduction proce-
dure are obtained consequently [6, 7]. Another important
example of the proposed singular values can be found in L,
gain analysis [15]. In fact, investigating the singular values
for L, stable nonlinear input-output systems is equivalent
to analyzing the solution of the corresponding Hamiltonian
extension giving the solution of L, gain analysis of the orig-
inal operator [7].

3. Differentially self-adjoint operators

In order to investigate the solution of (5), we need to
characterize a nonlinear version of a self-adjoint operator,
since the eigenstructure of such operators play an important
role in investigating singular values of linear operators. Let
us define differentially self-adjoint operators as follows.
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Definition 2 Consider a Hilbert space X with a field K, and
a bounded nonlinear operator f : Xy — X with an open set
Xy satisfying 0 € Xy ¢ X. The operator f is said to be
differentially self-adjoint if it is differentiable and if d f(x) :
X — X is self-adjoint for all x € Xj.

An intuitive motivation of this definition is explained by
the following lemma and corollary.

Lemma 1 Consider a Hilbert space X with a field K, and
a bounded nonlinear operator h . Xo — R with an open set
Xy satisfying 0 € Xo C X. Suppose that h is continuously
differentiable and that there there exists an operator f :
Xo — X satisfying

dh(x)(dx) = Re(f(x), dx). (6)
Then the operator f is differentially self-adjoint.

Corollary 1 Consider Hilbert spaces X and Y with a field
K, and a bounded nonlinear operator g . Xo — Y with
an open set X satisfying 0 € Xo C X. Suppose that g is
continuously differentiable. Then the operator f : Xo — X
defined by

f(x0) = (dg(x)"g(x) (7N

is differentially self-adjoint.

Therefore, any singular value problem reduces down to
an eigenvalue problem with respect to a special class of
operators called differentially self-adjoint.

The final objective of this section is to provide a converse
result of of Lemma 1. To this end, let us state the following
lemma.

Lemma 2 Consider a Hilbert space X with a field K, and
a bounded nonlinear operator f : Xo — X with any simply
connected open set X satisfying 0 € Xy C X. Suppose that
f is differentially self-adjoint. Then

(f(x),x) €ER, Vx e X.

Using this lemma, we can prove a converse result of
Lemma 1, which is a variation of Stokes’s theorem.

Theorem 2 Consider a Hilbert space X with a field K, and
a bounded nonlinear operator f : Xo — X with a simply
connected open set X satisfying 0 € Xy C X. Suppose that
f is differentiable. Then f is differentially self-adjoint if
and only if there exists an operator h : Xy — R satisfying

dh(x)(dx) = Re(f(x), dx). ®)

4. Eigenvalue analysis of differentially self-adjoint op-
erators

This section investigates the solution structure of the
eigenvalue problems of differentially self-adjoint operators
based on the results derived in the previous sections, which
is particularly useful for singular value analysis of nonlin-
ear operators as explained in Theorem 1.

Theorem 3 Consider a Hilbert space X with a field K, and
a bounded nonlinear operator f : Xo — X with a simply
connected open set X satisfying 0 € Xy C X. Suppose that
f is differentially self-adjoint. Then all eigenvalues of f are
real. Furthermore, if f satisfies (7), then all eigenvectors
of f are singular vectors of g.

This theorem allows us to concentrate on real eigenval-
ues when we treat differentially self-adjoint nonlinear op-
erators, as in the linear case.

The final objective of this paper is to obtain a some con-
ditions on the existence of singular values of nonlinear op-
erators (i.e., eigenvectors of differentially self-adjoint oper-
ators).

Theorem 4 Consider the Hilbert space X = R" with the
field K = R, and a bounded nonlinear operator f : Xg — X
with a simply connected open set Xy satisfying 0 € Xy C
X. Suppose that f is differentially self-adjoint, and that
df(0) : X — X has n distinct eigenvalues. Then there
exists a set D,(R) C R satisfying {x | ||x]| € D(R)} C Xo,
and a set of differentiable operators A; : D, (R) — R’s and
x; : D,(R) — Xo’s satisfying

F(xi(9)) = A(s) xi(s), xi(ll = Isl, s € DR).  (9)

Furthermore, we can prove a relationship between the
eigenvalues of f and the singular values of g. Recall the
linear case and let o;’s and 4;’s denote the singular values
of A : X — Y and the eigenvalues of A*A : X — X. Then

clearly we have
=0 (10)

due to the definition (2). The nonlinear counterpart of this
equation is given by the following theorem.

Theorem 5 Consider Hilbert spaces X = R" and Y with
a field K, and a bounded nonlinear operator g : X9 — Y
with an open set Xy satisfying 0 € Xy C X. Suppose that
the operator f defined by (7) satisfies the assumptions in
Theorem 4. Then the singular values o(s)’s of g defined
by oi(8) = llg(xi(II/l1x;(8)|] and the eigenvalues A;(s)’s of
f satisfy

dO"
A(5) = o) + 5 7i(s) d’is). )
Further, the converse relation is given by
2 Ay
oi(s)? = Z f s Ai(s)ds. (12)
0

Theorem 5 shows the fact that there is a one-to-one re-
lationship between A;(s) and o(s). In the linear case, both
oi(s)’s and 4;(s)’s are constant, so Equations (11) and (12)
recover the straightforward relationship (10).

5. Application to Hankel singular value analysis

This section explains how the singular value analysis
framework developed in the previous sections apply to non-
linear Hankel operators which play important roles in non-
linear balanced realization and model reduction.
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5.1. Hankel operators

Let us consider a nonlinear Hankel operatorH : U —» Y
defined on Hilbert spaces U and Y. Here we suppose that
H can be decomposed as

H=0oC (13)

with the controllability operator C : U — X and the 0b-
servability operator O : X — Y where C is surjective and
X is also a Hilbert space. Typical examples of H are re-
lated to the following dynamical systems. See [8] for the
details.

Example 1 Consider an asymptotically stable finite di-
mensional continuous-time linear system

{i:

It’s controllability operator C : L7'(R,) — R” and observ-
ability operator O : R” — L’zJ (R,) are defined by

Ax + Bu
Cx+ Du

%0 Cu) := f " e Bu(t)dr
0

O(x°) := Cex°.

y

Its Hankel operator is given by the composition (13) with
U=LJR,),X=R'and Y = L)(R,).

Example 2 Consider an L)-stable finite dimensional
continuous-time nonlinear system

{x = f(x,u,1)
y =

h(x,u,t)
It’s controllability operator C : L7'(R,) — R" and observ-
ability operator O : R" — L’z’ (R,) are defined by

0_ ) x = —fGu,p) x(c0)=0
VS N i) = f(x0,6) x0)=x°
y=0u0 { y = he0. 13)

Its Hankel operator is given by the composition (13) with
U=LyR,),X=R'and ¥ = LL(R,).

Example 3 Consider an £,-stable finite dimensional
discrete-time nonlinear system

x@¢+1) = fx@,u@®,?)
Yo = h(x(D),u®),?)

It’s controllability operator C : £J'(Z,) — R" and observ-
ability operator O : R" — ¢5(Z,) are defined by

o 2= = fG@,u@,) xe)=0
= Cw) : { o 20

_ 0y . x(t+1) = f(x(6),0,1) x0)= X0
y=00) { YO = h(,0,1

Its Hankel operator is given by the composition (13) with
U=LYZ),X =R"and Y = L5(Z,).

Here we investigate the singular value structure of Han-
kel operators which is a generalized version of the result in
[5]. This investigation will derive a balancing and model
reduction procedure which are applicable to a much wider
class of nonlinear systems such as time-varying systems,
input-non-affine systems, discrete-time systems.

The controllability and observability functions L, : X —
R, and L, : X — R, with respect to the Hankel operator
H given in (13) are defined by

1
0 _ 22
L) = faf, Sl (16)
1
L") = FI0GOIP. (17)

If the pseudo-inverse C* : X — U of C : U — X defined
by
C'(x%) := arg inf |lu (18)
s

exists, then L. can be written as
|
Le(x") = ZICTGOIP.

5.2. Singular value analysis of Hankel operators

Application of Theorem 1 to the nonlinear Hankel oper-
ator given in (13) yields the following corollary.

Corollary 2 Suppose the Hankel operator H : U — Y is
Fréchet differentiable. Then av € U is a singular vector of
H if and only if
AH@) oHW) =Av, A€R, v(z0)eU. 19)
Here Equation (19) characterizes all stationary (critical)
inputs. For the objective of Hankel theory in control, we
are only interested in such stationary inputs in the image
space of C7, see [5] for a detailed discussion on this matter.
Therefore what we have to solve here is Equation (19) and
velmC'. (20)
We call investigation of the solution of the above equation
“singular value analysis of 4. Here the solution v is “a
singular vector” and the corresponding scalar o~ defined by

_IHO)
T

@

is called a “singular value” of H.

It was proved in our former paper [5] that the singular
value structure (19) can be characterized by an algebraic
equation using L. and L, if the target system is an input-
affine continuous-time nonlinear system. However, this re-
sult were not directly applicable to general (neither non-
affine nor discrete-time) nonlinear systems so far.
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6. Singular value analysis of Hankel operators

The objective of this section is to provide the solution of
Equations (19) and (20) for singular value analysis of the
Hankel operator H. Here we assume the smoothness of the
operators C, O and C".

Assumption A1 the operators C: U —» X, 0 : X — Y and
C" : X — U exist and are differentiable.

Under Assumption Al we can obtain an alternative char-
acterization of singular value analysis of the Hankel opera-
tor on the signal space X which is much simpler than (19).

First of all, in order to characterize the signal space sat-
isfying the constraint (20), let us consider the properties of
the pseudo-inverse operator C*. By Assumption A1, both
C and C" exist and are smooth. Hence the constraint (20)
can be characterized by singular value analysis of C* o C.
That is,

ICT o Cl
argsup —————
ue |l

with the maximum singular value 1 characterizes the ele-
ments of Im C¥, because

—”O ° Cwll =1 uelImC’
1]

—”C ;Tl‘(u)” <1 otherwise
u

hold for the definition of C* in (18).
By the argument similar to Equation (4) we know that
Equation (20) reduces to singular value analysis
ICT o CWI
vl

since the maximum singular value is 1. This turns out to be

d(C" o)) o C oCv) =

(dC))* o @CT(CM))* o CT 0 C(v) = v. (22)
On the other hand, the decomposition of H in (13) implies
that the singular value analysis equation (19) can be written
as

(dCW))* o (dAO(C(M))* 0O o C(V) = Av. (23)

Comparing (22) and (23), we obtain a sufficient condi-
tion to characterize the singular structure of H as

dOCW))* 000 C(r) = A(ACT(CM)* o C" o Cv) (24)

using the linearity of the operator (dC(v))*. Defining the
intermediate signal ¢ := C(v), we can obtain a simpler ex-
pression

(dO©)" 0 (0()) = A (CT ()" o (CT(&).  (25)

Recall that the derivative of the controllability and ob-
servability functions L. and L, defined in (16) and (17) are

given by
dL(x)(dx) = (C'(x), dC(x)(dx)) = ((ACT(x))"(CT(x)), dx)
(26)
dL,(x)(dx) = (O(x), dO(x)(dx)) = ((dO(x))"(O(x)), dx)
(27

Therefore Equation (19) reduces down to

dL,(&) = A dLc(&).

Finally we can obtain the following result which is the gen-
eralized version of the result in [5] in the sense that it is
applicable to a larger class of input-state-output systems.

Theorem 6 Suppose that Assumption Al holds. Assume
moreover that there exist A € R and & € X satisfying

dLy(&) = AdLc(§).
Then v € U defined by

(28)

vi=C'(®)

is a singular vector of H.

(29

Note that the corresponding singular value o defined in
(21) is given by

IHOI _ 100 CoC'@Il _ 0@
(vl IC* Il IC* Il

A2I0@IP _  |Lo(@)

A/DIC @I L&)
In particular, if we can characterize all the solutions &;’s of
(28) and let o;’s denote the corresponding singular values,
then clearly we obtain the property that the Hankel norm,

which is the gain of the Hankel operator, coincides with the
maximum singular value. That is,

IHI _ (o
i lull i

u#0 &

Example 4 Suppose that our target system is the linear dy-
namical system given in Example 1. Then the solution of
singular value analysis of the corresponding Hankel opera-
tor can be characterized by

£0=2£P"

with the controllability and observability Gramians P and
0, which is equivalent to

PO &é=2A¢.

That is, £ is the eigenvector of PQ and the solution set of
¢ plays the role of the coordinate axes of the balanced re-
alization. Furthermore, the singular value o coincides with
the Hankel singular values (square root of the eigenvalues
of PQ).
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Example 5 Suppose that our target system is the dynami-
cal system given in Example 2 or 3. Then the solution of
singular value analysis of the corresponding Hankel opera-
tor can be characterized by an algebraic equation

L,
2 ©=4 (30)
X

oL,
3 (&)

0
Similarly to the linear case, the solution set of & plays the
role of the axes of the balanced coordinates. Furthermore,
in this case, if the jacobian linearization of the system is
controllable, then there exists a coordinate transformation
X = ®©(x) such that the transformed system satisfies [11]

1
L(® (X)) = ExTx.
Hence the equation (30) further reduces down to

IL,(®7' (%))

P & =2a¢

Obviously, this is a nonlinear eigenvalue problem with a
differentially self-adjoint operator. Further, Theorems 4
and 5 are directly applicable to this problem, since our in-
put signal space X = R” now.

Please note that we do not require any state-space re-
alization of any operator here. So Theorem 6 is applica-
ble to very general nonlinear systems including both con-
tinuous and discontinuous both input-affine and input-non-
affine dynamical system.

7. Conclusion

This paper proposed a novel framework for singular
value analysis of nonlinear operators. First of all, a natural
definition of nonlinear singular values is proposed. Sec-
ond, it is shown that the singular values thus defined can be
obtained by solving a special class of nonlinear eigenvalue
problems with respect to differentially self-adjoint opera-
tors. Third, some properties of singular values are clarified.
A sufficient condition for the existence of singular values
is proved. Further, application of the proposed method to
singular value analysis of nonlinear Hankel operators ex-
hibits its effectiveness. It is expected that this framework
will provide a useful analysis tools for nonlinear control
systems theory, in particular for balanced realization and
model reduction, as in the linear case.

References

[1] J. Appel and M. Doérfner. Some spectral theory for
nonlinear operators. Nonlinear Analysis, Theory,
Methods and Applications, 22(12):1955-1976, 1997.

[2] J. Batt. Nonlinear compact mappings and their ad-
joints. Math. Ann., 189:5-25, 1970.

[3] E E. Browder. Nonlinear eigenvalue problems and
Galerkin approximations. Bull. Amer. Math. Soc.,
74:651-659, 1968.

[4] D. G. Cacuci, R. B. Perez, and V. Protopopescu.
Duals and propagators: A canonilcal formalism for
nonlinear equations. J. Math. Phys., 29(2):353-361,

1988.
[5] K. Fujimoto and J. M. A. Scherpen. Eigenstruc-
ture of nonlinear Hankel operators. In A. Isidori,

F. Lamnabhi-Lagarrigue, and W. Respondek, editors,
Nonlinear Control in the Year 2000, volume 258 of
Lecture Notes on Control and Information Science,
pages 385-398. Springer-Verlag, Paris, 2000.

[6] K. Fujimoto and J. M. A. Scherpen. Balancing and
model reduction for nonlinear systems based on the
differential eigenstructure of Hankel operators. In
Proc. 40th IEEE Conf. on Decision and Control,
pages 3252-3257, 2001.

[7] K. Fujimoto and J. M. A. Scherpen. Singular value
analysis and balanced realization of nonlinear sys-
tems. Measurement and Control, 42(10):814-820,
2003. (in Japanese).

[8] K. Fujimoto and J. M. A. Scherpen. Nonlinear input-
normal realizations based on the differential eigen-
structure of Hankel operators. To appear in IEEE
Trans. Automatic Control, 2004.

[9] K. Fujimoto, J. M. A. Scherpen, and W. S. Gray.
Hamiltonian realizations of nonlinear adjoint opera-
tors. Automatica, 38(10):1769-1775, 2002.

[10] S. Jingxian and L. Bendong. Eigenvalues and eigen-
vectors of nonlinear operators and applications. Non-
linear Analysis, Theory, Methods and Applications,
29(11):1277-1286, 1997.

[11] J. W. Milnor. Morse Theory. Annals of Math. Stud.
51, Princeton University Press, New Jersey, 1963.

[12] J. W. Neuberger. Existence of a spectrum for nonlin-
ear transformations. Pacific Journal of Mathematics,
31(1):157-159, 1969.

[13] J. M. A. Scherpen and W. S. Gray. Nonlinear Hilbert
adjoints: Properties and applications to Hankel singu-
lar value analysis. Nonlinear Analysis: Theory, Meth-
ods and Applications, 51(5):883-901, 2002.

[14] G. W. Stewart. On the early history of the singular
value decomposition. SIAM Review, 35(4):551-566,
1993,

[15] A. J. van der Schaft. [L,-gain analysis of nonlin-
ear systems and nonlinear state feedback H,, control.
IEEE Trans. Autom. Contr., AC-37:770-784, 1992.

456



