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Abstract— We derive a recursion formulae of transition
probability of the noise-induced synchronization arising in
a pair of identical uncoupled logistic maps linked by com-
mon noisy excitation only. The formulae has a delta type
stationary solution by which it is explained that the maps
can perfectly be synchronized with probability 1.

1. Introduction

One of the most surprising results of the recent years in
the field of nonlinear stochastic dynamics is that two identi-
cal nonlinear systems can perfectly be synchronized when
they share common stochastic or chaotic excitation. This
kind of noise-induced synchronization can easily be found
in the discrete map and the Lorenz system[1], and the Duff-
ing oscillator[2]. Furthermore, the authors have already
shown that the noise-induced synchronization of the van
der Pol system can be characterized as the point structure
of random invariant measures[3]. In these studies, how-
ever, the main interest seems to be in dynamical aspects of
the synchronization in view of the chaotic synchronization
and related fields[1, 2] or the theory of random dynamical
systems[3].

On the contrary, this paper studies a stochastic aspect
of the noise-induced synchronization arising in a pair of
identical uncoupled logistic maps linked by common noisy
excitation only. We regard the response of the mapping as
a Markov process and derive the transition law of it. We
then analytically show that the Markov process has the ab-
sorbing barrier which corresponds to the perfect synchro-
nization. The analytical consideration is in good agreement
with the result of Monte Carlo simulations.

2. Noise-induced synchronization

2.1. Synchronization of the logistic maps

We consider a synchronization system composed by a
pair of identical uncoupled logistic maps linked by com-
mon noisy excitation of the following form:

xn+1 = An xn(1 − xn),
yn+1 = Anyn(1 − yn)

(1)

where An is the noisy term which is uniformly distributed
in the interval [Ac−σ, Ac+σ]. If σ = 0, then the system (1)
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Figure 1: The bifurcation diagram of the logistic map.
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Figure 2: Noise-induced synchronization of the pair of lo-
gistic maps linked by common noisy excitation for σ = 0.2
(n ≥ 30).

coincides the deterministic logistic map with the constant
parameter An = Ac for all n. In order to determine the
range of σ to be considered, the bifurcation diagram of the
one-dimensional logistic map:

xn+1 = Axn(1 − xn) (2)

is shown in Fig 1. From the diagram, we choose the center
value Ac = 10/3 and strict the value of σ in the range 0 ≤
σ ≤ 0.2 to avoid the one-periodic domain, A < A0 ≈ 3, in
which the trivial synchronization of the system (1) occurs.

Fig 2 shows a sample process of the synchronization sys-
tem (1) whose noise intensity σ is changed from 0 to 0.2
at n = 30. In the deterministic case for n < 30, the two-
periodic responses xn, yn of different initial values oscillate
with the phase difference of period one. As σ is changed
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to 0.2 at n = 30, the responses xn, yn become synchronized
with each other.

For further investigation, we introduce the transforma-
tion: [

rn

sn

]
=

[
1 −1
1 1

] [
xn

yn

]
.

Then, the original equation (1) is rewritten as

rn+1 = Anrn(1 − sn),

sn+1 = An

(
sn − r2

n + s2
n

2

) (3)

where rn = xn − yn represents error of the synchronization.
In what follows, we refer to the new equation (3) as an error
system of the synchronization system (1).

2.2. Stability of the error system

We first examine the case for the fixed An = Ac (for all
n). Based on the linearized form of the error system (3)
given by[

δrn+1

δsn+1

]
=

[
Ac(1 − sn) −Acrn

−Acrn Ac(1 − sn)

] [
δrn

δsn

]
,

the stability of the fixed points of (3) is obtained. All the
stable fixed points for Ac = 10/3 are listed below.

Index Fixed point Eigenvalue
FP1

(
0, (13 ± √13)/10

) −4/9
FP2

( ± √13/10,∓√13/10
) −4/9

The trivial (FP1) and the nontrivial (FP2) solutions cor-
respond to the synchronized and the unsynchronized re-
sponses of the error system (3) respectively. It is clearly
shown that both the synchronized and the unsynchronized
solutions have the same eigenvalue −4/9 which is a stable
eigenvalue of mapping systems because it is placed within
the unit circle of the complex plane. Therefore, in the de-
terministic case, there is no difference in stabilities between
the synchronized and the unsynchronized solutions.

By contrast to the deterministic case, the nontrivial so-
lution (FP2) loses its stability in the stochastic case where
An is random. Fig 3 shows a sample process of the error
system (3) starting from the nontrivial solution (FP2). The
noise intensity σ is changed from 0 to 0.2 at n = 30. In
the deterministic case for n < 30, the nontrivial solution
(FP2) maintains the stability of the stable eigenvalue −4/9.
However, the nontrivial solution vanishes and jumps into
the trivial solution (FP1) as σ is increased to 0.2 at n = 30.
The trivial solution after n = 30 exhibits a strong stability,
that is, it is not randomly fluctuated and seems to maintain
the constant value rn = 0 while the original system (1) is
randomly fluctuated by An.

This example makes it clear that the synchronization we
consider can not be characterized by the deterministic sta-
bility analysis because the difference between the synchro-
nized and the unsynchronized solutions can not be charac-
terized by the same eigenvalue.

-0.6

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40 50 60 70 80 90

r n
=

x n
−y

n

n

noise on

Figure 3: A sample process of the error system for A =
10/3 and for σ = 0.2 (n ≥ 30).

3. The Markov process generated by the mapping

As another option to characterize the synchronization,
we derive a recursion formulae which determines the tran-
sition probability densities of the stochastic system (1).

3.1. The single map case

We start with the simplest case, that for the single logistic
map with the random coefficient An of the form:

xn+1 = Anxn(1 − xn). (4)

Let the probability density function (PDF) of xn, xn+1,
An be pn(x), pn+1(x), ρ(A) respectively, and suppose that
pn(x) is known, ρ(A) is known and stationary, and pn(x)
and ρ(A) are independent. To avoid singularity, we also
assume the condition, 0 < xn < 1, without loss of generally
because the trivial solutions x = 0, 1 are not of interest in
our investigation. Then, the unknown density pn+1(x) is
determined as follows.

We first introduce the transformation: xn+1 = Anxn(1 −
xn), y = xn, whose Jacobian is given by

∂(xn+1, y)
∂(An, xn)

= xn(1 − xn).

From the assumption 0 < x < 1, the transformation is holo-
morphic so that the unknown joint PDF, p(xn+1, y), can be
determined by the known, p(An, xn) = ρ(A)pn(x), as

p(xn+1, y) =
(
∂(xn+1, y)
∂(An, xn)

)−1

pn(x)ρ(A).

Integrating it from 0 to 1 with respect to y, the desired
pn+1(x) is obtained as the marginal PDF of p(xn+1, y),

pn+1(x) =
∫ 1

0
p(xn+1, y)dy

=

∫ 1

0

pn(y)
y(1 − y)

ρ

(
x

y(1 − y)

)
dy. (5)

Therefore, the transition law from pn(x) to pn+1(x) is ob-
tained as the recursion formulae (5) which governs the
Markov process generated by the map (4).
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3.2. The linked pair case

Such a transformation of PDF also leads to the transition
law of the synchronization system (1), however, some ad-
ditional trick is needed in this case. We thus start with the
unlinked form:

xn+1 = An xn(1 − xn),
yn+1 = Bnyn(1 − yn)

(6)

Let the joint probability density of xn and yn be pn(x, y),
and that of An and Bn be ρ(A, B), and suppose that the re-
sponse is independent of the input at the same time, i.e.,
p(xn, yn, An, Bn) = p(xn, yn)ρ(A, B), and that ρ is stationary.
Then, we introduce the following transformation:

xn+1 = Anxn(1 − xn),
yn+1 = Bnyn(1 − yn),

u = xn, v = yn

whose Jacobian is

∂(xn+1, yn+1, u, v)
∂(xn, yn, An, Bn)

= xnyn(1 − xn)(1 − yn).

It is clear that the transformation is holomorphic in the
domain considered, 0 < xn, yn < 1. Therefore,

p(xn+1, yn+1, u, v)

=
pn(u, v)

uv(1 − u)(1 − v)
ρ

(
xn+1

u(1 − u)
,

yn+1

v(1 − v)

)

and integrating p(xn+1, yn+1, u, v) from 0 to 1 with respect
to u and v, we obtain the recursion formulae:

pn+1(x, y) =
∫ 1

0

∫ 1

0

pn(u, v)
uv(1 − u)(1 − v)

× ρ
(

x
u(1 − u)

,
y

v(1 − v)

)
dudv. (7)

To rewrite the unlinked form (7) to the linked form cor-
responding to the linked pair of maps (1), we assume the
joint density ρ(A, B) of the form:

ρ(A, B) := ρ(A)δ(A − B) = ρ(B)δ(A − B) (8)

where the probability density ρ(A) of An and ρ(B) of Bn

are assumed to be identical, i.e., ρ(A) = ρ(B), and δ is the
Dirac’s delta function with the following properties[4]:

(d1) δ(−x) = δ(x),

(d2) f (x)δ(x − a) = f (a)δ(x − a),

(d3) δ(ax) = |a|−1δ(x), more generally,

g(xi) = 0 (i = 1, 2, · · · , n)

=⇒ δ(g(x)
)
=

n∑
i=1

|dg(xi)/dx|−1δ(x − xi).

From the definition (8), the probability of the event An �
Bn equals 0 and the marginal density of it is identical to the
density ρ(A) = ρ(B), that is,∫ ∞

−∞
ρ(A, B)dA = ρ(A) = ρ(B) =

∫ ∞

−∞
ρ(A, B)dB.

This means that the value of the random variable An is iden-
tical to that of Bn with probability 1, and thus the assump-
tion (8) reasonably corresponds to the situation where the
pair of maps is linked by the common noise An, as defined
in (1).

Then, the linked version of (7) is obtained in the form:

pn+1(x, y) =
∫ 1

0

∫ 1

0

pn(u, v)
uv(1 − u)(1 − v)

× ρ
(

x
u(1 − u)

)
δ

(
x

u(1 − u)
− y

v(1 − v)

)
dudv. (9)

Applying (d1)-(d3) to eliminate the delta function from (9),
we finally obtain the recursion formulae:

pn+1(x, y) =
∫ 1

0

∫ 1

0
ρ

(
x

u(1 − u)

)

×
pn

(
1
2
(
1 −Φ)

, v
)
+ pn

(
1
2
(
1 + Φ

)
, v

)
yΦ

dudv (10)

where Φ := Φ(x, y, v) =
√

1 − 4xv(1 − v)/y.
The recursion formulae (10) describes the transition law

from pn(x, y) to pn+1(x, y). This means that the error among
the synchronization system (1) generates the Markov pro-
cess governed by (10).

4. Probability densities of the synchronization

4.1. A special solution for the perfect synchronization

We first assume a candidate of a stationary solution of
the equation (10) of the following form:

pn(x, y) := δ(x − y)pn(x) = δ(x − y)pn(y)

where pn(x) is a solution of the equation (5) which is the
state probability density of the single map (4) at the time n.

Put, α := x/y, and

g1 :=
1
2

(1 −Φ) − v, g2 := v − 1
2

(1 + Φ) ,

pn
1 := pn

(
1
2
(
1 −Φ)

, v
)
= δ(g1)pn(v),

pn
2 := pn

(
1
2
(
1 + Φ

)
, v

)
= δ(g2)pn(v),

where Φ(x, y, v) = Φ(α, v) =
√

1 − 4αv(1 − v). Then, zeros
of gi = gi(α) are obtained as a simple point α = 1 (i = 1, 2),
and the derivative of gi(α) is

g′i(α) = g′(α) =
2v(1 − v)√

1 − 4αv(1 − v)
.
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Therefore, from (d1)-(d3), we can rewrite pn
1, pn

2 as

pn
i =

1
|g′i(1)|δ(x/y − 1)pn(v) =

|y|
|g′i(1)|δ(x − y)pn(v)

=
y
√

1 − 4v(1 − v)
2v(1 − v)

δ(x − y)pn(v) (i = 1, 2). (11)

Substituting (11) into (10), we have

pn+1(x, y)

= δ(x − y)
∫ 1

0
ρ

(
y

v(1 − v)

)
pn(v)

√
1 − 4v(1 − v) dv

v(1 − v)
√

1 − 4v(1 − v) x
y

.

Since δ(x − y) = 0 holds if x � y,

= δ(x − y)


∫ 1

0
ρ

(
y

v(1 − v)

)
pn(v)

√
1 − 4v(1 − v) dv

v(1 − v)
√

1 − 4v(1 − v) x
y


x=y

= δ(x − y)
∫ 1

0
ρ

(
y

v(1 − v)

)
pn(v)

v(1 − v)
dv.

From the equation (5), finally we have

= δ(x − y)pn+1(y).

Therefore, it is proved that δ(x−y)pn(y) is a special solution
of the equation (10).

This special solution exactly corresponds to the perfect
synchronization of xn and yn in the system (1) because from
the definition of the delta function, the probability of the
event, rn = xn − yn � 0, equals 0 and the density of unit
volume is perfectly concentrated on the line rn = xn − yn =

0. In other words, values of the random variables xn and yn

are perfectly synchronized with probability 1.

4.2. Numerical examples

Fig 4 shows the transient probability densities of the syn-
chronization system (1) obtained by Monte Carlo simula-
tions on 2 × 107 samples of the numerical solution of (1)
starting from (x0, y0) = ( 13−√13

20 , 13+
√

13
20 ) corresponding to

one of the nontrivial solutions (FP2).
As the time n is increased, the initial density concen-

trated in the initial point (x0, y0) becomes diffused around.
Meanwhile, a part of diffused density becomes captured by
the peak on the line rn = xn − yn = 0. The diffused density
nearly vanishes until n = 2000 and only the peak of the
form δ(x − y)pn(y) is alive.

This numerical result confirms the analytical result that
the synchronization system (1) has the stationary density of
the form δ(x − y)pn(y).

5. Conclusion

We have demonstrated that the pair of identical uncou-
pled logistic maps can perfectly be synchronized when they

(n=40)

0.5
1

x0

0.5

1

y

0

30

60
pn(x,y)

(n=2000)

0.5
1

x0

0.5

1

y

0

100

200

300
pn(x,y)

Figure 4: Numerical transient probability densities of the
pair of maps for A = 10/3, σ = 0.2 and for n = 40,2000.

are linked by common noisy excitation and shown that the
linked pair (1) generates the Markov process having the
special solution of the form δ(x − y)pn(y).

From what has been investigated, we can reasonably
conclude that the perfect synchronization corresponding to
the trivial solution (FP1), rn = xn−yn = 0, can be identified
as an absorbing barrier of the Markov process. In view of
this, the nontrivial solution (FP2) can be regarded as a lo-
cal minimum of the potential higher than that of the trivial
solution confined on the absorbing barrier.
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