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Abstract—Rotating machineries are the most widely
used elements in mechanical systems. In many systems,
such as power plant and jet engine, the rotating machinery
is multi-span rotor, which is supported by multiple bear-
ings. In this research, we consider a 2-DOF nonlinear ro-
tary system in which the two nonlinear rotors are coupled
by means of a weakly linear stiffness. We show nonlinear
normal modes in this system using the method of multiple
scales. Furthermore, we indicate the occurrence of mode
localization in this system.

1. Introduction

Rotating machineries, such as steam turbines, gas tur-
bines and motors, are the most widely used elements in
mechanical systems. However, the rotating parts of such
machineries often become the main source of vibration.
Hence, analyzing the source of vibration is the critical is-
sue, in order to enhance the stability and the reliability
of mechanical systems. In many systems, such as power
plant and jet engine, the rotating machinery is multi-span
rotor, which is supported by multiple bearings. There-
fore, the multi-span rotor is characterized as the system
in which each rotor with nonlinear spring characteristic is
coupled by means of a weakly linear stiffness. In these
systems, there is a possibility of the occurrence of mode
localization[1]∼[3] as indicated in the multiple degree of
freedom spring-mass systems. Recently, also in the non-
linear systems such as multi-span rotor, nonlinear normal
modes has attracted attention [4]∼[6].

In this research, we consider a 2-DOF nonlinear rotary
system in which the two nonlinear rotors are coupled by
means of a weakly linear stiffness. We show nonlinear
normal modes in this system using the method of multi-
ple scales. Then, we indicate the occurrence of mode lo-
calization in this system. Furthermore, we experimentally
observe the orbits of rotors.
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Figure 1: Analytical model
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Figure 2: Coordinate system

2. Analytical model and dimensionless equation of mo-
tion

As shown in Fig. 1, we consider the behavior of the sys-
tem in which the two Jeffcott rotors are coupled by means
of a weakly linear stiffness. Here, Jeffcott rotor is the rotor
in which a rigid disk is mounted at the center of a massless
elastic shaft supported at both ends by ball bearings. We
introduce the coordinate system as shown in Fig. 2. The
origin O of the coordinate system O-xy coincides with the
bearing centerline. In Fig. 2, the point G of rotor 1 devi-
ates slightly (ed) from the geometrical center M, where G
and M are the center of gravity and the geometrical cen-
ter, respectively. On the other hand, the setup of rotor 2 is
well-assembled. Moreover, considering the cubic nonlin-
earity from the characteristic of spring of bearing and the
shaft elongation, the equation of motion of the system can
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be written as follows:

mẍ1+cd ẋ1+kx1+γd x2+βd(x2
1+y2

1)x1 =medω
2 cosωt(1)

mÿ1+cdẏ1+ky1+γdy2+βd(x2
1 + y2

1)y1 =medω
2 sinωt (2)

mẍ2+cd ẋ2+kx2+γd x1+βd(x2
2 + y2

2)x2 = 0 (3)
mÿ2+cdẏ2+ky2+γdy1+βd(x2

2 + y2
2)y2 = 0, (4)

where ω, cd, k, βd and γd are the angular velocity, the
viscous damping coefficient, the linear spring constant of
the elastic shaft, the nonlinear spring constant and the linear
spring constant of the coupling, respectively.

Next, we rewrite Eqs. (1)-(4) in the dimensionless form.
Using the inverse value of the frequency Ω =

√
k/m as the

representative time Tr and the span l as the representative
length, we set the dimensionless parameters as follows:

t = (1/Ω)t∗, x1 = lx∗1, y1 = ly∗1, x2 = lx∗2, y2 = ly∗2.

Hereafter the asterisk is omitted.
Hence, we obtain the following dimensionless equa-

tions:

ẍ1 + cẋ1 + x1 + γx2 + β(x2
1 + y2

1)x1 = eν2 cos νt (5)
ÿ1 + cẏ1 + y1 + γy2 + β(x2

1 + y2
1)y1 = eν2 sin νt (6)

ẍ2 + cẋ2 + x2 + γx1 + β(x2
2 + y2

2)x2 = 0 (7)
ÿ2 + cẏ2 + y2 + γy1 + β(x2

2 + y2
2)y2 = 0, (8)

where the dimensionless parameters, e∗, c∗, γ∗, β∗ and
ν∗, are expressed as follows:

e∗ =
ed

l
, c∗ =

cd√
mk
, γ∗ =

γd

k
, β∗ =

βdl2

k
, ν∗ =

ω

Ω
.

3. Derivation of the approximate solution using the
method of multiple scales

We analyze Eqs. (5)-(8) as 4-DOF equations of oscilla-
tions. By using a small parameter ε (| ε |� 1) as a booking
device, we quantitatively set the magnitudes of the param-
eters as follows:

e = ε3ê, c = ε2ĉ, γ = ε2γ̂,

where ( ˆ ) denotes ”of the order O(1)”. We seek the
approximate solutions of Eqs. (5)-(8) in the form

x1 = εx11 + ε
3 x13 + · · · (9)

y1 = εy11 + ε
3y13 + · · · (10)

x2 = εx21 + ε
3 x23 + · · · (11)

y2 = εy21 + ε
3y23 + · · · . (12)

We introduce the multiple time scales as follows:

t0 = t, t2 = ε2t,

where t0 is the fast time scale, and t1 is slow time scale.
By applying the method of multiple scales, the following
approximate solutions are obtained:

x1 = ax1 cos(νt + ϕx1) + O(ε3) (13)
y1 = ay1 cos(νt + ϕy1) + O(ε3) (14)
x2 = ax2 cos(νt + ϕx2) + O(ε3) (15)
y2 = ay2 cos(νt + ϕy2) + O(ε3). (16)

Then, ax1, ϕx1, ay1, ϕy1, ax2, ϕx2, ay2 and ϕy2 are com-
puted by solving the following set of eight modulation
equations:

d
dt

ax1 =−1
2

cax1 +
1
2
γax2 sin (ϕx1 − ϕx2)

+
1
8
βax1a2

y1 sin 2(ϕx1 − ϕy1) − 1
2

e sin ϕx1 (17)

ax1
d
dt
ϕx1 =−σax1 +

1
2
γax2 cos(ϕx1 − ϕx2)

+
3
8
βa3

x1 +
1
4
βax1a2

y1

+
1
8
βax1a2

y1 cos 2(ϕx1 − ϕy1) − 1
2

e cosϕx1 (18)

d
dt

ay1=−1
2

cay1 +
1
2
γay2 sin(ϕy1 − ϕy2)

−1
8
βa2

x1ay1 sin 2(ϕx1 − ϕy1) − 1
2

e cosϕy1 (19)

ay1
d
dt
ϕy1 =−σay1 +

1
2
γay2 cos(ϕy1 − ϕy2)

+
3
8
βa3

y1 +
1
4
βa2

x1ay1

+
1
8
βa2

x1ay1 cos 2(ϕx1 − ϕy1) +
1
2

e sin ϕy1 (20)

d
dt

ax2 =−1
2

cax2 − 1
2
γax1 sin(ϕx1 − ϕx2)

+
1
8
βax2a2

y2 sin 2(ϕx2 − ϕy2) (21)

ax2
d
dt
ϕx2 =−σax2 +

1
2
γax1 cos(ϕx1 − ϕx2) +

3
8
βa3

x2

+
1
4
βax2a2

y2 +
1
8
βax2a2

y2 cos 2(ϕx2 − ϕy2) (22)

d
dt

ay2=−1
2

cay2 − 1
2
γay1 sin(ϕy1 − ϕy2)

−1
8
βa2

x2ay2 sin 2(ϕx2 − ϕy2) (23)

ay2
d
dt
ϕy2 =−σay2 +

1
2
γay1 cos(ϕy1 − ϕy2) +

3
8
βa3

y2

+
1
4
βa2

x2ay2 +
1
8
βa2

x2ay2 cos 2(ϕx2 − ϕy2), (24)

where ν = 1 + σ.

4. Mode localization

In Fig. 3, the frequency response curves are depicted
when c = 2.14 × 10−3, γ = −1.09 × 10−2, β = 2.52 ×
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Figure 3: Frequency response curve (c = 2.14 × 10−3, γ = −1.09 × 10−2, β = 2.52 × 103, e = 3.85 × 10−5, —— : stable,
- - - - : unstable)

103 and e = 3.85 × 10−5, these values correspond to those
of the subsequent experiment. The solid and dashed lines
denote stable and unstable equilibrium points, respectively.
From Eqs. (5)-(8), the motions in the x and y-directions are
symmetric, the vibrations in the x-direction has the same
amplitude as in the y-direction, and the phase difference of
π/2 from in the y-direction. It can be found that bifurcated
nonlinear normal modes are localized. Mode localization
occurs as shown with the symbols© and � in Fig. 3.

Figures 4-6 express the orbits of rotors at the rotor speeds
shown with the symbols �, © and � in Fig. 3. At the con-
dition of the symbol �, where the nonlinear normal modes
is not bifurcated, the amplitude of rotor 1 is almost equal to
that of rotor 2 as shown in Fig. 4. At the symbol ©, even
though the rotor 1 has unbalance, the amplitude of rotor 2
is much larger than that of rotor 1 as shown in Fig. 5. Due
to the occurrence of such a response, there is a possibility
of wrong diagnosis that rotor 2 has unbalance. On the other
hand, this phenomenon indicates that the rotor 2 can be uti-
lized as a dynamic vibration absorber. At the symbol �, the
amplitude of rotor 1 is much larger than that of rotor 2 as
shown in Fig. 6. The usage of this phenomenon prevents
the influence of the oscillation in the rotor 1 caused by the
unbalance on the rotor 2.

5. Experiments

5.1. Experimental setup

Figure 7 shows the experimental setup. An elastic shaft
with circular cross section with a length l = 0.708 m and a
diameter 1.2 × 10−2 m is supported at both ends by a self-
aligning double-ball bearing (�1200) and a single-row deep
groove ball bearing (�6804). A disk is mounted at the cen-
ter of the shaft. The disk is 0.3 m in diameter and 8.21
kg. The two rotors like this are coupled by spring in imita-
tion of a flange type shaft coupling. The shaft is driven by
the three-phase induction motor (Meidensha Corp., TIS85–
NR) through V-belt and V-pulley. The motions of disks and
the angular velocities are measured from the laser sensors
and the rotary encoders, respectively. Other parameters are
as follows:

k = 3.28 × 104 N/m, βd = 1.65 × 108 N/m3, γd = −358 N.
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Figure 4: Theoretical orbit (σ = 0.0015, at the symbol � in
Fig. 3)
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Figure 5: Theoretical orbit (σ = 0.0207, at the symbol ©
in Fig. 3)
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Figure 6: Theoretical orbit (σ = 0.0597, at the symbol � in
Fig. 3)
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Figure 7: Experimental setup

5.2. Experimental results and discussion

In Figs. 8-10, we show the experimantal orbits of the
rotors. In previous section, we analyzed the motion of rotor
as circular motion. Indeed, the experimental motion can be
expressed the elliptical motion as a summation of forward
whirling motion and backward whirling motion. Therefore,
we compare the amplitudes of orbits afterward. In the case
ωr(angular velocity)×60/2π = 600 rpm, the amplitude of
rotor 1 is almost equal to that of rotor 2 as shown in Fig. 8.
Moreover, in the case ωr × 60/2π = 641 rpm, even though
rotor 1 has unbalance, the amplitude of rotor 2 is larger
than that of rotor 1 as shown in Fig. 9. On the other hand,
in the case ωr × 60/2π = 624 rpm, the amplitude of rotor
1 is much larger than that of rotor 2 as shown in Fig. 10.
We experimentally confirm the occurrence of theoretically
predicted two types of mode localizations.

6. Conclusions

In this research, we investigate the nonlinear normal
modes in 2-DOF nonlinear rotary system in which the two
nonlinear rotors are coupled by a weakly linear stiffness.
Analyzing the equations of motion as 4-DOF equations of
oscillations, we show the occurrence of mode localizations
in this system. Moreover, based on mode localization, we
indicate the possibility of vibration suppression and wrong
diagnosis. Furthermore, we experimentally observe theo-
retically predicted mode localizations.
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