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Abstract—A novel method for the identification and mod-
eling of neural networks using experimental spike trains is
discussed. The method assumes a reference model of inter-
connected deterministic integrate-and-fire neurons and fit
the parameters of the model to the observed experimental
spike trains. The identification provides the properties of
the individual synapses and neurons, hence extracting the
functional connectivity between neurons. The method is
shown to be effective when applied on simulated data.

1. Introduction

The qualitative and quantitative analysis of the spiking ac-
tivity of individual neurons is a very valuable tool for the
study of the dynamics and functional architecture of the
neural networks in the Central Nervous System [1]. In par-
ticular, deducing the functional connectivity of neural net-
works from experimental data, usually restricted to spike
trains, is of crucial importance in neuroscience: for the
correct interpretation of the electrophysiological activity of
the involved neurons and networks; and, more important,
for correctly relating the electrophysiological activity to the
functional tasks accomplished by the network. Here, the
term functionalstands for any observable, direct or indi-
rect, interaction between neurons which alters their spike
timings.

The measured activity of a neuron is not the result of
its solely intrinsic properties, but stems from the direct
and indirect influences of the other neurons of the net-
work, leading to network behaviors far beyond the sim-
ple combinations of those of the isolated neurons. On the
other hand, the measured time instants of spike occurrences
(point events) do not allow any direct insights about the
subthreshold and/or intrinsic membrane dynamics of the
neurons. Nonetheless, spike trains can be used to identify
the functional characteristics and effective architecture of
the neural network they originated from, e.g [2, 3].

The most common and standard methods for identifying
the synaptic connections between neurons assume a sto-
chastic nature of the spike trains, and the functional bond
between two neurons is extracted from the statistical infer-
ence of the discharges times, usually deducing it from the
shapes of cross-correlograms [2, 3]. Though widely under-

stood, this tool provides a very limited knowledge about
the functional properties of the neural networks, and it
cannot distinguish direct from indirect connections among
neurons. Recently, more sophisticated statistical methods
[4, 5, 6] have overtaken this problem. However, these meth-
ods still fit into a stochastic framework and lack a com-
pact description of the estimated interactions. Furthermore,
since they assume a stochastic nature of the spike trains,
they do not provide considerations about the dynamics of
the involved neurons, nor about the nature of the intrinsic
processes that are responsible for such behavior.

In contrast to a purely statistic approach, a deterministic
one can be considered, with the main advantage of pro-
viding a mathematical model for inferring single neuron
or neural network properties indirectly. In this direction,
methods for extracting a dynamical system out of the inter-
spike intervals have been recently proposed [7, 8], however
these methods assume neurons to be isolated; hence, they
do not provide insights about the neural network structure
and its relationships with the observed dynamics.

Here a new model based method for the identification
and modeling ofwholeneural networks from experimental
spike trains is proposed. A description of the method is
given in Sec. 2, whilst in Sec. 3 numerical tests of it are
presented and then discussed in Sec. 4.

2. Identification Method

The identification method, despite being quite mathemati-
cally convoluted, is rather transparent in its principle. The
reference model adopted in the identification process is a
network of interconnected integrate-and-fire neurons. All
the parameter values necessary to univocally define it,i.e.
the connectivity matrix of the network, the synaptic time
scales, and the intrinsic parameters of the neurons, are de-
rived from the recorded spike trains by an optimization
procedure which minimizes the difference between the pre-
dicted and measured timings of spike episodes.

Precisely, givenN spike series from as many neurons,
the reference model is a network composed ofN intercon-
nected single-compartment leaky integrate-and-fire mod-
els. The connections between neurons are represented by a
N×N matrixW whose elementswkn are the weights of the
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synapses directed from thekth to thenth neuron. Schemat-
ically, it results in a graph ofN vertices representing the
neurons, whose spike trains are experimentally observed,
where the links between vertices match functional synapses
between the corresponding neurons.

After normalization, the dynamics at nodek can be writ-
ten as:

v̇k = −vk

τk
+ i0k + is

k (t) , if vk = 1 thenvk = 0∧ spike, (1)

wherevk is proportional to the neural membrane potential,
τk is the membrane time constant,is

k (t) is the synaptic cur-
rent induced by the spikes from the other neurons of the
network, and the constant currenti0k allows neurons to fire
periodically when uncoupled. Whenever the membrane po-
tentialvk reaches the thresholdvk = 1 a spike is fired and
vk is instantaneously reset to the initial statevk = 0.

The synaptic current provided to neuronk by a spike
from neuronn is well approximated by:

is (t) =
wnk

λn
exp

(
− t − t′

λn

)
,

wheret′ is the time instant when a spike from the presynap-
tic neuron arrives;wnk accounts for the synaptic strength
and polarity (weight); andλd is a time constants determin-
ing the synaptic time scale. Hence, between two spikes of
neuronk, the total synaptic current can be accounted by the
sum over all spikes, within the interspike interval of neuron
k, generated by all the presynaptic neurons:

isk (t) =

N∑
n = 1
n , k


wnk

λn

∑

j

exp

(
− t − tn j

λn

) . (2)

Given the spike events, the identification of all the pa-
rameters is guaranteed by the decomposition of the fitting
problem according to two nested independencies of the
integrate-and-fire (reset) model: first, the dynamical equa-
tion of each neuron remains independent from the others;
second, the dynamics of each neuron within an interspike
interval is independent from the dynamics within the other
intervals. Hence, the identification proceeds neuron- and
interval-wise. In particular, the working principle is out-
lined in Fig. 1. Let us assume that a neuronk receives two
synaptic inputs of different polarity,i.e. excitatory and in-
hibitory, cf. two upper spike trains. For each one of the
two synapses, an input spike induces an exponential cur-
rent and the sum of them gives the postsynaptic current
Isyn. The amplitude and the sign of the two components
of the postsynaptic current are defined by the correspond-
ing weights of the connectivity matrixW, in this case with
only two synapses let call them shortlyw1 andw2; the de-
cay of the current, duration of the synaptic transmission, is
defined by the parametersλ1 andλ2, in general different.
Between each two spikes of neuronk, in absence of ex-
ternal input, the membrane potential evolves according to
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Figure 1: Operating scheme of the identification algorithm.

its intrinsic dynamics (dashed line). When external spikes
income, the membrane potential deviates from the intrinsic
behavior, highlighted in gray, and, each time the membrane
potential reaches the threshold, the neuron fires a spike and
v is reset to the initial state. Given the input spike trains, the
parameter setp =

{
i0, τ, λ1, λ2,w1,w2

}
of Eqs. (1) and (2)

define uniquely the dynamics of neuronk within two of its
successive spikes. Hence, the parameters can be adjusted to
minimize the sum of squared differences∆Ti between the
experimentally observed firing of the neuron (“experiment
output”) and the firing predicted by the model (“model out-
put”). The resulting parameter setp∗ gives the best (predic-
tive) estimate of the intrinsic parameters and of the entries
in the connectivity matrix corresponding to the modeled
neuron.

Finally, it should be noted that this algorithm consents
also the inclusion of any a priori knowledge of the para-
meter values, which may be provided by physiology, mor-
phology, etc., simply constraining to the given values or
ranges of the corresponding parameters. Furthermore, re-
curring to a preprocessing of the spike trains, the method
handles bursting neurons; all is needed is to specify the
minimal time interval for which two spikes are considered
to be separated events and not a burst.

3. Numerical Tests
The method has been validated on three artificial test beds
(neuron networks): i) a network of two probabilistic Spike
Response Model (SRM) neurons [9] with low firing rates;
ii) a network of two tonic Regularly Spiking (RS) [10] neu-
rons; and iii) a mixed SRM-RS three neurons network.

For each of the three “experimental” arrangements, the
method has been applied to identify the connectivity pat-
tern and intrinsic parameter values of the model neural net-
work. Afterwards, the identified models have been simu-
lated. Though, in the case of a few neurons the considered
reference model possess rather simple dynamics, demon-
strating a kind of synchronization phenomenon in spite of
the strong variability of the measured data. Hence, in the
simulations a white modeling noise has been added to the
deterministic equations to model all the unmeasured phe-
nomena, including entrances from unobserved neurons and
noisy environment. The simulation of the identified model
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Figure 2: Identification and modeling of a two-neuron
network with an excitatory-inhibitory coupling loop be-
tween two SRM neurons. The upper part marked “Exper-
iment” shows the experimental spike trains and their ISI
and cross-correlation histograms. The lower part marked
“Model” illustrates the identified connectivity matrix,Wmd,
which captures correctly the experimental connectivity pat-
tern, and the modeled spike trains with their ISI and cross-
correlation histograms, which are similar to those from the
experiment.

allows crosschecking statistical properties,e.g. interspike
intervals (ISI) and cross-correlation histograms, of mod-
eled and “experimental” spike trains, besides comparing
the connectivity patterns.

The details of the test beds and results are summarized
in Figs. 2–4.

Figure 2 shows the results for the case of two neurons
forming an excitatory-inhibitory loop. The “V” and “T”-
like link ends mark excitatory and inhibitory synapses,
respectively. The spike trains from the two neurons are
not trivially interrelated. The presence of the excita-
tory synapse is pointed out by the experimental cross-
correlation histogram, which shows a peak. However,
the presence of an inhibitory synapse is not obvious. On
the contrary, the identification method provides the correct
connectivity pattern, and the simulation of the network re-
sults in a satisfactory statistical accordance of experimental
and model produced data. Though, it should be noted that
the “experimental” and identified coupling matrices can be
compared only qualitatively, as the absolute values of their
entries are incommensurable referring to two completely
different mathematical models.
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Figure 3: Same as in Fig. 2 for the case of a two-neuron
network of mutually interconnected RS neurons.

Figure 3 illustrates the results for the case of two tonic
spiking neurons connected into an excitatory-inhibitory
loop. The auto-correlation clearly demonstrates equidis-
tantly distributed peaks representative of the tonic spiking
of both neurons, whilst the peaks in the cross-correlation
highlight the presence of synaptic coupling. However, as
in the previous experiment, the analysis of the histogram
does not allow outlining the connectivity pattern, neither
allows drawing any conclusion about the intrinsic spiking
nature of the two neurons. On the contrary, the identified
model provides the correct connectivity pattern and first or-
der statistics. Furthermore, the simulation of the two iso-
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Figure 4: Same as in Fig. 2 for the case of a mixed SRM-RS
three neurons network.
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lated (modeled) neurons allows spotting exactly their in-
trinsic spiking nature, highlighting in this way the model-
ing ability of the method.

Finally, Fig. 4 summarizes the results obtained when
applying the identification technique to a complex mixed
RS-SRM three-neuron network: neuron 1 and 2 are SRM
whilst the third is a RS neuron,cf. Fig. 4. Note that this
case has different feedback loops and indirect connections,
which makes problematic the study of the connectivity pat-
tern by means of the conventional cross-correlations. How-
ever, also for this harder case the identified model provides
the correct connectivity pattern and first order statistics.
Again, the simulation of the three isolated (modeled) neu-
rons correctly spots the intrinsic regularly spiking nature of
one of the three neurons.

4. Discussion
The proposed method has been successfully tested on ar-
tificially generated data. In order to assess the robustness
of the method, the generation of data has been performed
considering neuron models denying the most restricting hy-
potheses on which the method trusts. Namely, considering
networks combining statistical responding [9] and not re-
newal regularly spiking [10] neuron models, which deny
the determinism and the resetting property of the modeled
neuron, respectively. Furthermore, the three networks con-
sidered collect the main difficulties reported in literature
about the identification of the neural connectivity, like mu-
tual and indirect couplings and excessively regular inter-
spike intervals; hence, providing a reliable platform for the
assessment of the identification technique.

For all the considered networks, the method provided
the correct functional connectivity pattern. Simultaneously,
with reference to the modeling issues, the simulation of
the identified networks has provided spike trains with first
order statistics in satisfactory accordance with the exper-
imental ones and, for the more complex considered net-
works, the mathematical analysis of the identified model
has correctly spotted intrinsic features of the isolated neu-
rons, which could not be inferred from the spike trains by
statistical methods, highlighting in this way the strength of
the modeling technique.

Finally, it should be mentioned that the network con-
nectivity obtained may differ from the anatomical network
from which the data are observed. Though, both of them
are functionally equivalent for certain experimental condi-
tions, i.e. they span the same dynamical behavior, which
justifies the use of the termfunctional synapseor functional
networkused through all the text to indicate the equivalent
neural dynamical systems that could generate the observed
data.

5. Conclusions
The present paper has proposed a deterministic technique
that, given the spike trains ofN neurons, allows the extrac-
tion of a mathematical model describing the architecture of

the underlined biological neural network and the dynamic
behavior of its neurons. The method relies on the solely
spike discharging times, and has been successfully applied
on artificially generated data.
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