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Abstract—This paper investigates the coexisting attrac-
tors and their basin boundaries in nonlinear economic dy-
namics with noninvertible maps. To this end, it construct a
complementary two-good economy model in which each of
the goods is produced by a representative firm. This paper
examines that chaotic fluctuation from which the both firms
can benefit more than from a stationary point has a robust-
ness regarding the initial conditions. Through numerical
simulations, it shows that if 3-periodic chaotic attractors
coexist, basins of the attracting sets of benefitial chaos are
structurally stable and symmetric between the firms.

1. Introduction

Intensive analyses of nonlinear economic dynamics in
last two decades show that the output adjustment of
oligopolistic firms can be chaotic. Rand [6] demonstrates a
possibility of complex dynamics in a simple duopoly model
with unimodal reaction functions. Puu [5] also Kopel [3]
give microeconomic foundations of chaotic dynamics of
the duopoly model in different ways. Matsumoto and Non-
aka [4] investigate statistical properties of chaotic Cournot
model with complementary goods and demonstrates that
the firms can benefit from chaotic output adjustment more
than from a stationary point.

This paper extend the analysis of Matsumoto and Non-
aka by dealing with attractors and their basins of chaotic
output adjustment. Then it examines that the chaotic tra-
jectories along which the firms can get higher profits more
than staying at a stationary point have robustness regarding
their initial conditions. If chaotic trajectories converge to
3-periodic attractors, the basins of attracting set of the ben-
eficial chaos are structurally stable and symmetric between
the firms.

2. Model

Consider a two-good economy in which the goods are
complement. The two goods, namely x and y are respec-
tively produced by representative firms, say firm 1 and firm
2. Under the consideration of complementarity the firms
have positive external effects on their demand, then the in-

verse demand functions of the goods are given by

p1(x, y) = (α − 1)2 − 1
2
x + (αy)2

p2(x, y) = 1 − 1
2
y + (βx)2

(1)

here p1 and p2 are the market price of good x ∈ X and
y ∈ Y and X and Y are strategy spaces of firm 1 and firm
2.

In this paper we also assume that firms interact on their
production behavior, say, the firms have negative external
effects on their supply. Here we introduce simple linear
correlation between the goods, then the cost functions of
the firms are given by

C1(x, y) = 2α(α − 1)yx
C2(x, y) = 2βxy

(2)

here Ci is the cost function of firm i. (2) implies that the
marginal cost of each firm is constant to its own output but
linearly increasing to the other’s. We assume that α ≥ 1
and β ≥ 0 for nonnegative value of the marginal costs.

Profits of the two firms are defined by subtracting the
costs from their revenues. The profit function of firm i, Πi

is respectively given by

Π1(x, y) = p1x − C1(x, y),
Π2(x, y) = p2y − C2(x, y). (3)

At each discrete time period t the two firms produce the
outputs namely xt and yt. The firm adjust their outputs
observing the other’s behavior at the end of every period.
Assuming that the firms decide their production at period
t + 1 in order to maximize their expected profits, then the
output adjustment takes place as following dynamics,

xt = r1(y
(e)
t+1) ≡ arg maxΠ1(x, y

(e)
t+1),

yt = r2(x
(e)
t+1) ≡ arg maxΠ2(x

(e)
t+1, y)

(4)

were y
(e)
t+1 represents the expectation of firm 1 about the

output of firm 2 and x
(e)
t+1 does so the expectation of firm 2

about firm 1’s output. The map r1 : Y → X and r2 : X →
Y are generally called reaction functions and determined
as

r1(y) = (αy − α + 1)2,
r2(x) = (βx − 1)2. (5)
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We apply bounded rational (or naive) expectation method
on each firm, then assume y

(e)
t+1 = yt and x

(e)
t+1 = yx.

Therefore suppose that the two-dimensional map T : R
2 →

R
2 is defined by

T (x, y) ≡ (r1(y), r2(x)), (6)

then the time evolution of the complementary goods econ-
omy is obtained by T (x, y) = (x′, y′) where ′ represents
the one-period advancement operator.

Thus given an initial condition (i.c.) (x0, y0) ∈ X×Y , a
trajectory of the economy {xt, yt} is given by the iteration
of the map T ,

{xt, yt} = {T t(x0, y0)} (7)

where T t = T ◦ T t−1 and T 0 is an identical map.
To investigate the long-run behavior of the output adjust-

ment in (4) we will check the general properties of the two-
dimensional map T . To recall generic dynamics of T we
use following one-dimensional maps, F and G such that

F (x) ≡ r1 ◦ r2(y),
G(y) ≡ r2 ◦ r1(x). (8)

3. Basic Results

Here we briefly summarize the result of Matsumoto and
Nonaka [4]. Denote the graph of reaction curves x = r1(y)
and y = r2(x) by R1 and R2,

R1 ≡ {(r1(y), y)|y ∈ Y },
R2 ≡ {(x, r2(x))|x ∈ X}. (9)

As far as α ≤ 2 and β ≤ 2, both r1 and r2 map the unit in-
terval I ≡ [0, 1] to itself and then T : I × I → I × I . If the
i.c. (x0, y0) belongs R1 ∪R2, then the two firms moves al-
ternately, i.e. (xt, yt) belongs alternately R1 and R2. This
means that the graph of the union of the two reaction func-
tions is a trapping set for T , i.e. T (R1 ∪ R2) ⊂ R1 ∪ R2.1

The cycles of the two-dimensional map T are related to
those of the one-dimensional maps F and G. The analysis
of Bischi et al. [1] say that if F (also G) has a stable cy-
cle of period n, then T has a stable cycle of period 2n its
periodic points alternately belong to R1 and R2. Thus as
far as we restrict the i.c. (x0, y0) ∈ R1 ∪ R2, the dynamic
properties of T can be characterized by F or G. Figure
1 illustrates the bifurcation diagram of F with respect to
1 ≤ α ≤ 2 and 0 ≤ β ≤ 2. In Fig.1, red-coloured area de-
picts stable region and as the colour is getting change, the
number of period of a stable cycle increases doublingly. In
white-coloured area, we can observe chaotic fluctuations
of the output adjustment. We can see that the behavior of
the output adjustment changes from convergence to a stable
stationary point to chaotic fluctuation.

1In fact we can check that if i.c. (x0, y0) ∈ R1 ∪ R2, then
T t(x0, y0) ∈ R1 ∪ R2 ∀t ≥ 0.
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Figure 1: Bifurcation diagram of F

To investigate the long-run behavior of the output ad-
justment and its implication to the economy, we calculate
the average profit of the two firms taken along the tra-
jectory of the output adjustment. first we restrict the i.c.
(x0, y0) ∈ R1 ∪ R2 and get following results.

• For symmetric case (α = β), one firm can bene-
fit from chaotic fluctuation of the output adjustment
more than from the stationary point but the other does
not.

• If α is relatively close to 1 and β is relatively close to
2, both of the firms can benefit from chaotic fluctua-
tion more than a stationary point.

4. Critical Curve Analysis

Now, we investigate generic case which includes the i.c.
(x0, y0) /∈ R1∪R2. Here T may have coexisting attractors
and the output adjustment faces multistability. Therefore
we examine first the structure of the coexisting attractors
and basins of the attracting sets.

The point (x′, y′) = T (x, y) is called the rank-1 image
of (x, y). A point (x, y) such that T (x, y) = (x′, y′) is
called a rank-1 preimage of (x′, y′). If distinct two point
(x, y) 	= (x̂, ŷ) have the same image, T (x, y) = T (x̂, ŷ) =
(x′, y′), then the map T is said to be noninvertible. For
α > 1 and β > 0, r1 and r2 then T becomes noninvert-
ible maps. To examine the attractors and their basins of a
two-dimensional map, we introduce the analysis of criti-
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cal curves LC.2 LC is the image of the fold curve LC−1.
LC−1 coincides with the set of points in which the Jaco-
bian determinant of T vanishes. Suppose that J is the Ja-
cobian matrix of T ,

J =
(

0 r′1(y)
r′2(x) 0

)
, (10)

then a point of LC−1 satisfies detJ = 0. Therefore we
have LC−1 = LC

(x)
−1 ∪ LC

(y)
−1 where

LC
(x)
−1 = {(x, y)|x = 1

β , y ∈ X},
LC

(y)
−1 = {(x, y)|x ∈ X, y = 1−α

α }. (11)

LC and its rank-k images determine the structure of the
attracting sets of T . If T has chaotic attractors then the
iteration of T t(LC−1) determines the boundaries of the at-
tracting sets.

Let A be an attracting set of T . The basins of A, B(A)
consists of non-connecting rectangles in phase space I × I .
The basin boundaries of all coexisting attractors are deter-
mined by periodic points of unstable cycles and their rank-
k preimages. Suppose that Cu is an unstable of T . In
the case of the two-dimensional map T given by (6), the
basin boundaries are horizontal and vertical lines crossing
all points of T−k(Cu).
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Figure 2: Bifurcation windows with 3-period cycles

5. 3-periodic Chaos

Here we determine the parameter region in which
chaotic trajectories starting from (x0, y0) /∈ R1 ∪ R2 are
beneficial for the both firms. In this investigation we focus
of the area in which the chaotic trajectories starting from
(x0, y0) ∈ R1 ∪ R2 are beneficial. We can see that in this
area there exists a bifurcation window of period 3 which

2The notion of “critical curve” is the two-dimensional version of n-
dimensional critical manifold and LC comes from the French “Ligne Cri-
tique.”

is illustrated in Figure 2. In yellow-coloured regions of
Fig. 2, F has cycles of period 3 and in green-coloured re-
gions it has 6-periodic cycles. We can see from Fig. 2
the cycles of period 3 become chaotic attractors through a
period-doubling bifurcation process.
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Figure 3: Basins of attraction of seven cycles

If α = 1.05 and β = 1.905 F (also G) has two stable cy-
cles of period 3 and T has seven coexisting stable cycles.3

Figure 3 illustrates the basins of attractions of seven stable
cycles. In Fig. 3, the rectangles of same colour are non-
connecting basins of same cycles. Here we can see that the
basins of attracting periodic points have box within a box
structure.
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Figure 4: Basins of attraction of beneficial chaos

With this parameter combination, the T has a unique
stationary point in I × I . For both firms we calculate
the stationary profit and the average profits with the seven
cycles then examine which cycles generates higher profit
more than the stationary point. Figure 4 shows the basins
of “ beneficial cycles”. The cycles to which the trajecto-
ries starting from black-coloured regions converge generate

3Here T has two cycles of period 3 and four cycles of period 6.
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higher profit more than the stationary point and the struc-
ture of the basins are symmetric between the two firms.

If we increase the both of the parameter values then pe-
riodic trajectories becomes chaotic. Just after becoming
chaotic, the output adjustment still has “periodic structure.”
That is, the chaotic trajectories of the output adjustment are
3-periodic and the attractor consist of three non-connecting
subsets of the phase space.

1
x

1

y

Figure 5: 3-periodic chaotic attractors

Let α = 1.1 and β = 1.93. Then two 3-periodic chaotic
attractors coexist. Figure 5 illustrates the chaotic attractors
with 3-periodic structures. The borders of the attractors are
determined by the rank-k image of critical curve LC i.e.
{T k(LC−1)} k ≥ 1. For both two firms the trajectories
converging to the black-coloured periodic attractor gener-
ate higher profits more than the stationary profits. In addi-
tion, the basins of the beneficial chaos have same structure
with the case of stable cycles of period-3 and are symmetric
between the two firms. The output adjustment keeps these
properties as far as the chaotic attractors are periodic. Thus
they are structurally stable, too.

If the parameter values increase further the chaotic at-
tractors of the output adjustment loss their 3-periodic struc-
ture. To determine the parameter region in which the output
adjustment is chaotic and the attractors are 3-periodic we
calculate the periodic point of unstable 3-period cycle of T
and compare them with the points of LC = T (LC−1). Fig-
ure 6 illustrates the parameter region of 3-periodic chaos.
In the white-coloured rhombic area enclosed by two bold
lines and periodic arms, the output adjustment converges
to 3-periodic chaotic attractors and then holds the above
properties.

6. Discussion

The first numerical results summarised in Section 3
shows that if we focus the i.c. on the reaction curves (i.e.
(x0, y0) ∈ R1 ∪ R2), chaotic output adjustment can be
beneficial for both two firms if α is relatively close to 1 and
β is relatively close to 2. The next two sections examine
the case of (x0, y0) /∈ R1 ∪ R2). If cycles of F becomes
chaotic, then T has infinite chaotic attractors. However if
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Figure 6: The border of 3-periodic chaos

these chaotic attractors are periodic, their long-run prop-
erties are eventually same among the trajectories converg-
ing to same attracting set. Numerical results demonstrated
through Section 5 indicate that with 3-periodic chaotic at-
tractors, the basins of attracting sets which generate higher
average profits more than stationary profit are symmetric
between the two firms and structurally stable. In this sense,
we can say that beneficial chaos of output adjustment has
robustness regarding its initial conditions.
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