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Abstract—This paper examines a simple monetary op-
timizing model with sticky prices. By using the Hopf bi-
furcation theorem, we show the existence of limit cycles,
which mean that the indeterminacy of equilibrium arises.
This result suggests that a constant money growth rule
might fail to stabilize the economy.

1. Introduction

The analysis of whether the supply of money has a
real effect is a central topic in the field of monetary eco-
nomics. If real economic activity is independent of the
rate of money growth, money is said to be “superneutral.”
The seminal work by [12] shows that the superneutrality
of money is valid in the long-run steady state using the
money-in-the-utility-function (MIUF) approach. After his
contribution, the validity of the Sidrauski result has been
reexamined by subsequent studies (for example, [3], [5],
[7], [11], and [13] among others).

Most of them have demonstrated that the superneutrality
result crucially depends on some particular assumptions of
the Sidrauski paper. If the labor supply is endogenous1 or
if Harrod- neutral technological progress is present2, then
the long-run steady state is not in general invariant to the
growth rate of money.

From a different angle, the present paper attempts to re-
examine the superneutality of money: we allow for nomi-
nal price stickiness to extend a Sidrauski-type model. As
pointed out by [4, p. 127], prominent twentieth-century
economists such as John Maynard Keynes, Milton Fried-
man, Franco Modigliani, and James Tobin believe that
price stickiness plays an important role in explaining eco-
nomic fluctuations.

The purpose of the present paper is to explore the rela-
tion between the monetary growth rate and the qualitative
properties of the steady state. In particular, we investigate
the possibility of endogenous and persistent business cycles
through a sticky-price channel3. By choosing the mone-
tary growth rate as a bifurcation parameter, we apply the
Hopf bifurcation theorem to our sticky price model. Under
certain conditions, we can find that a high money supply

1See, for example, [5, pp. 773–775].
2On this subject, see [13].
3The emergence of chaotic fluctuations can be found in [10], who as-

sumes a flexible-price environment and constructs a MIUF model in the
discrete time context. His result is derived through the Li-York theorem.

growth would generate persistent and periodic fluctuations
around the steady state. On the other hand, a low money
supply growth would yield a stable stationary point. Thus
the equilibrium path is indeterminate.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a monetary optimizing model with sticky
prices and characterizes the dynamic properties of the
steady state. Section 3 discusses two examples. Finally,
Section 4 concludes the major findings of our analysis.

2. A monetary economy

In this section we develop a simple infinite-horizon mon-
etary economy with sticky-prices. There exist three agents:
a representative household, a representative producer, and
the government, and three commodities: physical goods,
bonds, and money.

2.1. The model

The infinitely lived representative household maximizes
her lifetime utility:

∫ ∞
0

[ ln ct + v(mt)] e−ρtdt, (1)

where ct denotes the level of consumption, mt represents
real money balances, and ρ (> 0) is the subjective discount
rate. The function, v(m), is well-behaved with v′(·) > 0 and
v′′(·) < 0.

In the economy there are only two assets: money (m) and
government bonds (b). The household accumulates real fi-
nancial wealth, at(= mt + bt), according to the following
law of motion:

ȧt = rtat + yt − τt − ct − (rt + πt)mt, (2)

where, rt is the real interest rate, yt is real output, τt(> 0) is
lump-sum taxes levied by the government (if τt < 0, it de-
notes lump-sum transfer payments from the government),
and πt is the rate of inflation.

The household’s optimization problem is to choose ct

and mt to maximize (1) subject to (2). The optimality solu-
tion is obtained by setting up the Hamiltonian function:

H = ln c + v(m) + µ[ra + y − τ − c − (r + π)m], (3)
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where µ is the costate variable. The optimality conditions
are:

∂H/∂c = 0 : 1/c = µ, (4)

∂H/∂m = 0 : v′(m) = µ(r + π), (5)

µ̇ = ρµ − ∂H/∂a : µ̇ = µ(ρ − r). (6)

Consolidating the optimality conditions, we can obtain
the following Euler equation,

ċt = [v′(mt)ct − πt − ρ]ct. (7)

The governmental budget constraint is

ȧt = rtat + g − τt − (rt + πt)mt, (8)

where g denotes exogenous and constant government con-
sumption. We assume that the government controls the
level of lump-sum taxes to peg the level of nominal gov-
ernment liabilities; At = ptat = A0, for all t ≥ 0, where
pt is the price level4. Hence, the government budget con-
straint (8) can be rewritten as

τt − g = (rt + πt)bt. (8’)

Equation (8’) implies that the primary surplus, τt − g, is
equal to interest payments on the public debt, (rt + πt)bt,
at all times. Furthermore, we assume that the government
maintains a constant growth rate of nominal money supply:

Ṁ = θM, (9)

where θ is a constant parameter. This policy rule, therefore,
implies that

ṁ = (θ − π)m. (10)

As for the firm’s production decision, the output level is
determined by the effective demand:

yt = ct + g. (11)

This equation captures a Keynesian feature: the flexible
quantity adjustment leads the goods market into equilib-
rium at each point in time. Furthermore, we introduces
price stickiness. The inflation rate adjusts to the gap be-
tween effective demand and capacity output. Specifically,

π̇t = β(ct + g − yn), β > 0, (12)

where yn denotes capacity output, whose level is constant
and exogenous. On this point, see [6].

2.2. The analysis

We now consider the local stability properties of the
long-run steady state. Equations (7), (12), and (10) con-
stitute a complete system of nonlinear dynamic equations
with three endogenous variables (c,m, π). The long-run

4This assumption is adopted by [6].

steady state is defined as a set of constant functions {c,m, π}
satisfying (7), (12), and (10); that is,

v′(m∗)c∗ = θ + ρ, (13)

c∗ + g = yn, (14)

π∗ = θ. (15)

¿From the above equations, we can see the superneutral-
ity of money in the long-run steady state; the steady state
level of consumption is independent of money growth.5

We should furthermore note that the acceleration of money
supply raises the inflation rate and thereby lowers the
amount of real money balances demanded, namely

m∗ = m∗(θ), dm∗(θ)/dθ = 1/(v′′(m∗)c∗) < 0. (16)

Linearizing (7), (12), and (10) around the steady state
leads to the dynamic system,


ċ
ṁ
π̇

 =


v′c∗ v′′c2∗ −c∗
0 0 −m
β 0 0




c − c∗
m − m∗
π − θ

 . (17)

The corresponding characteristic equation of this sys-
tem, P(λ) = λ3 + b1λ

2 + b2λ + b3 = 0, has the following
coefficients:6

b1 = −traceJ = −v′(m∗)c∗ < 0, (18)

b2 = sum of all second-order principal minors of J

= βc∗ > 0, (19)

b3 = −detJ = βv′′(m∗)m∗c∗2 < 0, (20)

∆ := b1b2 − b3 = v′(m∗)(η(m∗) − 1)βc∗2, (21)

where J is the Jacobian matrix on the right-hand side of
(17) and η(m∗) represents the coefficient of relative risk
aversion evaluated at the steady state m∗;

η(m∗) = −m∗v′′(m∗)
v′(m∗)

> 0. (22)

By utilizing η(m∗), we can characterize the equilibrium
dynamics of our model:

Proposition 1 If η(m∗) < 1, then the equilibrium path is
the steady state itself. On the other hand, if η(m∗) > 1, then
there exists a continuum of perfect-foresight equilibria.

5Naturally we have to impose g < yn to ensure the positive amount of
c∗.

6The coefficients of the characteristic equation can be computed
through the elements of the Jacobian matrix. On this point see, for ex-
ample, [2, p.633] and [8, pp. 247–248].
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Proof. Since b3 < 0, the characteristic equation, P(λ) = 0,
has at least one positive root, say, λ1 > 0. Then, we have

λ2λ3 > 0, (23)

on the ground that b3 = −λ1λ2λ3 < 0.
Using the following relations:7

b2 = λ1λ2 + λ2λ3 + λ3λ1 > 0 (24)

b1b2 − b3 = −(λ1 + λ2)(λ2 + λ3)(λ3 + λ1), (25)

we can derive

∆(= b1b2 − b3) = −[(λ1)2 + b2](λ2 + λ3). (26)

Equation (26) implies that b1b2 − b3 and λ2 + λ3 have the
opposite sign, since (λ1)2 + b2 > 0. Thus, recalling (23),
we can show that both real parts of λ2 and λ3 are positive
(negative) if ∆(= b1b2 − b3) is negative (positive).8

These results lead to the conclusion that the character-
istic equation, P(λ) = 0, has three positive roots for all
η(m∗) ∈ (0, 1), while it has two negative roots and one pos-
itive root for η(m∗) > 1. This completes the proof of the
proposition, since we have two control variables, c and m,
in our model.

If η(m∗) < 1, the equilibrium path is determinate. By
contrast, if η(m∗) > 1, the equilibrium displays indetermi-
nacy, which can be connected with sunspots or business
cycles. Proposition 1 therefore suggests that proper and
adequate control of θ stabilizes the economy so long as the
government maintains η(m∗(θ)) < 1. We proceed with our
analysis under the following hypothesis:

Hypothesis 1 (Increasing relative risk aversion). The
relative risk aversion η(·) is an increasing function of m:
dη(m)/dm > 0.

This hypothesis is explained and justified by Arrow in
his argument. [See [1, pp. 96–98].] Under Hypothesis 1,
we can obtain the following corollary:

Corollary 1 Suppose that there exists a critical value, θ =
θH, such that η(m∗(θH)) = 1. If θ > θH, then the equilib-
rium path is the steady state itself. On the other hand, if
θ < θH, then there exists a continuum of perfect-foresight
equilibria.

However, this assertion is not always the case, because
our analysis is limited to the neighborhood of the steady
state. Let us now examine further this point, which is our
main concern. Concentrating on the parameter θ, we can
prove the following proposition.

7On this point, see [2, p.634].
8Note that this statement is valid regardless of whether both λ2 and λ3

are real or complex numbers.

Proposition 2 Suppose that there exists a critical value,
θ = θH, such that η(m∗(θH)) = 1. Then the dynamic system
undergoes a Hopf bifurcation, which generates persistent
fluctuations.

Proof. To apply the Hopf bifurcation theorem, we have to
prove that (i) the characteristic equation has a pair of pure
imaginary roots and no other roots with zero real parts, and
(ii) the real part of the pure imaginary roots is not stationary
with respect to θ. For our purpose, it suffices to verify that9

b1(θH) � 0, b2(θH) > 0, ∆(θH) = b1b2 − b3 =

0, and d∆(θH)/dθ � 0.
The first three conditions are obvious from (18), (19) and

(21). Differentiating (21) at θH yields

d∆(θ)
dθ

∣∣∣∣∣
θ=θH

= v′(m∗)βc∗2θ
dη(m∗)

dm∗
dm∗(θ)

dθ

∣∣∣∣∣
θ=θH

. (27)

Thus, we can confirm that d∆(θH)/dθ < 0 since
dη(m∗)/dm∗ > 0 and dm∗(θ)/dθ < 0. This completes the
proof.

Proposition 2 establishes only the existence of limit cy-
cles. To obtain more meaningful results, we impose two ad-
ditional assumptions: increasing relative risk aversion and
supercritical bifurcation. The latter presupposes that a sta-
ble limit cycle appears when the steady state is unstable.10

Then we can obtain:

Corollary 2 In Proposition 2, we adopt the hypothesis of
increasing relative risk aversion and assume that a super-
critical bifurcation occurs. Then there appears a stable
limit cycle if θ > θH, whereas the equilibrium path exhibits
indeterminacy if θ < θH.

Proof. When dη(m)/dm > 0, we have d∆(θH)/dθ < 0 from
(27). Thus ∆(θ) is positive for θ < θH , while it is negative
for θ > θH . Accordingly a similar argument as in the proof
of Proposition 1 shows that the characteristic equation pos-
sesses three positive roots for θ > θH and two negative roots
for θ < θH . Then, by using Proposition 2 and the assump-
tion of supercritical bifurcation, we immediately arrive at
the conclusion of the corollary.

In this case, two types of indeterminacy can be found
according to θ. As discussed in Proposition 1, the equilib-
rium path is indeterminate if η(m∗) > 1 (θ < θH). This is
because the steady state is a stable point. The other type
of indeterminacy arises for η(m∗) < 1 (θ > θH); there ex-
ists an infinite number of trajectories diverging from the

9For details, see [2, pp. 634–635].
10In general, there are two types of Hopf bifurcation. In the case of

supercritical bifurcation, a stable limit cycle occurs around the unstable
equilibrium. On the other hand, the subcritical bifurcation yields an unsta-
ble limit cycles, which surrounds the stable equilibrium point. For further
details, see, for example, [9].
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steady state and thereafter converging to the stable limit
cycle. Such cyclical trajectories can be supported as equi-
librium paths since they fulfill all the optimality and the
market clearance conditions. Accordingly, from the view-
point of stabilization policy, we reasonably conclude that
none of the growth rates of money supply can stabilize the
economy.

3. Concluding Remarks

In this paper we construct a sticky-price model and char-
acterize the equilibrium dynamics of our model (Propo-
sition 1). Moreover, we prove the existence of persistent
fluctuations around the normal equilibrium employing the
Hopf bifurcation theorem (Proposition 2). Under addi-
tional assumptions, this proposition tells us that the gov-
ernment cannot stabilize the economy if monetary policy
takes the form of a constant money growth rule (Corollary
2).
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