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Abstract—Networks of fast-spiking inhibitory in-
terneurons in the neocortex, coupled by both excita-
tory and inhibitory connections, are implicated in the
synchronization of cortical firing at high frequencies
(30-100 Hz). We have fitted physiological phase re-
sponse curves of fast-spiking interneurons with a piece-
wise linear model, with added intrinsic noise. To de-
scribe entrainment of cell firing to that of coupled
neighbours, we analysed the deterministic and stochas-
tic bifurcations of the model, deriving conditions for
phase-locking amongst neurons and characterizing its
sensitivity to the parameters of synaptic connection
strength and to noise.

1. Introduction

Rhythmic oscillations of concerted electrical activ-
ity can occur in the neocortex at gamma frequencies
(30-80 Hz), and are thought to be associated with var-
ious cognitive tasks including sensory processing, mo-
tor control, and feature binding [1]. The synchronized
firing of interneurons has been implicated in gener-
ating these rhythms [2], and models of interneuron
activity suggest that network oscillations depend on
mutually inhibitory synaptic conductances. However,
in heterogeneous network models, coherent activity
can be fragile and dependent on parameter balanc-
ing [3, 4]. Intriguingly, it has recently been found that
fast-spiking (FS) interneurons are coupled by mutually
excitatory electrical synapses in addition to mutual in-
hibitory synapses [5, 6]. Recently, using the technique
of conductance injection [7] (dynamic clamp) we have
experimentally measured the effect of firing in coupled
presynaptic cells on the phase of periodic firing in fast-
spiking interneurons [8]. This was used to construct
a model of the physiological phase response relation-
ship of fast-spiking neurons. The aim was to provide
an accurate quantitative description of the dynamics
of synchronization, with parameters which reflect the
strength of synaptic connections. Here, we describe
the bifurcations of fundamental periodic points of the

deterministic, piecewise-linear phase response model.
We then describe a stochastic extension of the model
which takes into account intrinsic noise of cell firing,
and we analyse its stochastic bifurcations.
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Figure 1: Schematic diagram of the phase response
curve.

2. Definition of the phase response curve of FS

neurons for unitary presynaptic input

Figure 1 shows a schematic diagram of an
experimentally-determined phase response curve,
which is given by the following piecewise linear func-
tion:

∆φ(φ) =

{ −mret φ (0 ≤ φ < φc)
−madv φ + madv (φc ≤ φ < 1)

(1)

where mret and madv are parameters which describe
the slopes of phase retarding and advancing regions
of the relationship, respectively, determined predom-
inantly by the strength of GABA inhibitory connec-
tions and electrical connections, respectively, and φc

represents the transition point between the regions.
Let us consider the dynamics of a system where a

periodic stimulation (a presynaptic action potential) is
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applied every Ts = 1/ω time units to an FS cell which
has unperturbed firing frequency Ω (T = 1/Ω). The
phase φn = tn/T denotes the phase right before the
time of the n-th stimulus. Then we have the following
piecewise linear map for FS cell model from [0, 1) onto
itself:

φn+1 = φn + ∆φ(φn) + θ (mod 1) ≡ F (φn, θ) (2)

where θ = Ts/T is the amount of detuning of the firing
phase from stimulus phase which occurs during each
stimulus period. Fixed points of this map represent
phase-locking or synchronization of firing with stimu-
lus (postsynaptic cell with presynaptic cell). We have
analyzed bifurcations of fixed points of periods 1, 2
and 3 for this deterministic map, and computed the
Arnold tongue structure of synchronized regions for
parameters mret, madv and φc.
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Figure 2: (Left) Deterministic map F (φ, θM ) and its
orbits {φn}, (Right) Corresponding stochastic kernel
function p(ϕ|ϕ0). Parameters mret = 0.5,madv =
0.5, φc = 0.6,Ω = 80. The phase sequence φ0, φ1, · · ·
asymptotically converges to a fixed or a periodic point
which corresponds to M : N phase-locking. Each
stochastic kernel function p(ϕ|ϕ0) is calculated for
fixed noise intensity σ = 0.02.

3. Extending to the stochastic case

However, a fixed period T for the natural oscillation
of cells is an unsatisfactory idealization. In reality,

individual FS neurons show random variations in fir-
ing period of 10% or more. This intrinsic noise has a
major impact on the rate and extent of synchroniza-
tion. Therefore, we extend the deterministic map to
the case with noise. Let us consider the 1D discrete-
time dynamical system in Eq.(2) defined on an interval
S = [0, 1) in the presence of additive noise:

φn+1 = F (φn, θM ) + ξn, ϕn ∈ S n = 0, 1, 2, · · · ,
(3)

where {ξn} are independent random perturbations.
More precisely, assuming that ξ is a Gaussian random
variable, its density function is given by

p(ξ) =
1√
2πσ

exp

[
− ξ2

2σ2

]
(4)

where σ is a standard deviation. Numerical simulation
of this map accurately reproduced the rate and extent
of experimentally-measured synchronization.

First, we define a kernel function p. Let p(ϕ|ϕ0)dϕ

denote the probability for the phase to be within
(ϕ,ϕ+dϕ) on the condition that the initial phase was
ϕ0. According to a general definition of distribution
functions, we can define a kernel function p(ϕ|ϕ0) us-
ing a conditional distribution function under Eq.(3):

p(ϕ|ϕ0)dϕ = Prob{ϕ ≤ Φ ≤ ϕ + dϕ|Φ0 = ϕ0} (5)

The stochastic kernel p(ϕ|ϕ0) is a transition probabil-
ity density function (PDF), and the relation gives a
Markov operator.

Next, we consider a linear operator P in the pres-
ence of noise. Using the kernel function p, the linear
operator P is defined as follows[9]:

Ph(ϕ) =

∫
S

p(ϕ|ϕ0)h(ϕ0)dϕ0, h ∈ D (6)

where D is the set of absolutely integrable non-
negative functions with a unit L1 norm on S and
h(ϕ) denotes a PDF on R. The linear operator P
is called the Markov operator with the stochastic ker-
nel p(ϕ|ϕ0), or the Frobenius-Perron operator[9]. The
sequence {hn(ϕ)} produced by the operator P always
approaches a unique invariant density asymptotically
as n → ∞. Figure 2 shows examples of deterministic
maps and corresponding stochastic kernel functions for
1:1 and 4:3 phase-locking responses.

4. Calculation of stochastic bifurcations

To characterize phase-locking in this stochastic
framework, and its sensitivity to the stimulus pa-
rameters, we calculated stochastic bifurcations of the
phase response relationship. One “classical” defini-
tion of stochastic bifurcation, phenomenological or
P-bifurcation, is based on the topological structure
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Figure 3: Bifurcation curves for the change of the in-
tensity of the noise. Each bifurcation curves corre-
sponds to that of 1 : 1 phase-locking responses.

of invariant densities, while another definition, the
D-bifurcation, is based on analyzing the stability of
multiple invariant measures[10]. However, with these
definitions, it can be impossible to find bifurcations
near saddle-node bifurcation points of the correspond-
ing deterministic map as pointed out in [11, 12, 13].
For this reason, we used an alternative definition for
stochastic bifurcation, based on the transitions be-
tween complex and real eigenvalues of P [11, 14].
In general, eigenvalues (µ1 ≥ µ2 ≥ · · ·) and corre-
sponding eigenfunctions {ei} of the linear operator P
with the kernel p(ϕ|ϕ0) can be found. The sequence
{hn(ϕ)} of the PDF obtained by iterative application
of P always converges to an invariant density function.
In this sense, the invariant density h∗, or the eigen-
function e1, corresponding to eigenvalue µ1, has only
static information about the operator P, while sub-
sequent eigenvalues determine the convergence speed
of the sequence. In other words, eigenvalues µi and
eigenfunctions ei with i ≥ 2 have dynamic informa-
tion about P. A stochastic bifurcation is defined by
when the eigenvalues of the operator change their val-
ues from complex to real abruptly (not smoothly) at a
possible stochastic bifurcation point [11, 15, 12]. In
particular, we have examined the second and third
eigenvalues, since the larger the modulus of the eigen-
value, the greater a factor it is in determining the dy-
namics or evolution.

In practice, since the operator P is of infinite di-
mension, we estimated approximate values for these
eigenvalues of P by replacing P with a finite dimen-
sional square matrix obtained by discretizing the phase
ϕ0 and ϕ [11, 15], with criteria for sufficient resolu-
tion to ensure accuracy. In these numerical calcula-
tions, the stochastic kernel p(ϕ|ϕ0) corresponds to the
stochastic (transition probability) matrix denoted by
a real Na×Na square matrix A. The advantage of this
method is its relative simplicity together with the fact
that it replaces P with a stochastic matrix whose prop-
erties are well known. To investigate the characteristic
of the kernel, we apply spectral analysis to the stochas-
tic matrix. As an example of this, Figure 3 shows 1:1
stochastic phase-locking regions (Arnold tongues) cal-
culated in this way, for parameters φc, mret and madv
at various noise intensities.

5. Conclusions

We have analysed the bifurcations of a realistic
model of the physiological phase response relation-
ship of fast-spiking interneurons, which are believed
to play a central role in binding together episodes of
synchronized oscillation in the cortex. Intrinsic noise
of neurons was included in the model, and we charac-
terized its stochastic bifurcations according to a defi-
nition which is sensitive to dynamics of the stochastic
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map, in addition to the invariant density of the phase.
This model may serve as a component of large-scale
network models of spatial synchronization of periodic
activity in the cortex.
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