
Extensions of nonautonomous nonlinear integrable systems to

higher dimensions

Kouichi TODA† and Tadashi KOBAYASHI‡

†Department of Mathematical Physics, Toyama Prefectural University,
Kurokawa 5180, Kosugi, Imizu, Toyama, 939-0398, Japan

‡Graduate School of Informatics, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan,

Email: kouichi@yukawa.kyoto-u.ac.jp, tadashikob@yahoo.co.jp

Abstract—Nonautonomous nonlinear systems are
one of exciting subjects in Physical sciences and the
Integrable systems. Actually, several nonautonomous
partial differential equations from physical sciences
are thought of as perturbations of integrable sys-
tems. In this manuscript, we discuss nonautonomous
higher dimensional integrable systems in detail. Find-
ing new integrable systems is an important but diffi-
cult problem in the study of Integrable systems. For
the seek of new integrable systems, many researchers
have mainly investigated autonomous and lower di-
mensional nonlinear systems. We present new nonau-
tonomous higher dimensional systems from the Burg-
ers and KdV equations by applying the Painlevé test
which determine whether or not a given system is inte-
grable. We also give a Cole-Hopf transformation with
variable coefficients for the nonautonomous versions of
the Burgers equation in higher dimensions.

1. Introduction

Modern theories of nonlinear science have been
highly developed over the last half century. Partic-
ularly, the integrable system has attracted great in-
terests of a number of mathematicians and physi-
cists. One of the reason for such attentions is al-
gebraic solvability of the integrable systems. In ad-
dition to their theoretical importance, they have re-
markable applications that many physical systems are
thought of as perturbations of integrable systems such
as hydrodynamics, nonlinear optics, plasma and cer-
tain field theories and so on [1]. The notion of the in-
tegrable systems [2] is frequently not defined precisely
but rather is characterized generally by various inter-
related common features including the space-localized
solutions(solitons), Lax pairs, Bäcklund transforma-
tions and some Painlevé properties[3, 4]. Finding new
integrable systems is an important, but difficult prob-
lem because of their ambiguous definition and unde-
veloped mathematical background.

For discovery of new integrable systems, many re-
searchers have mainly investigated autonomous and

lower dimensional nonlinear systems [5, 6, 7, 8, 9, 10,
11, 12]. Thus many autonomous (1+1)-dimensional in-
tegrable systems have been found. On the other hand,
there are few research studies to find nonautonomous
nonlinear integrable systems, since they are essentially
complicated and their theory is still in its early stages.
In physical systems, however, nonautonomous nonlin-
ear integrable equations are one of exciting subjects
in Integrable systems[13, 14, 15]. Analysis of higher
dimensional system is also an active topic in the in-
tegrable system. For example, Boiti et al. introduced
the dromions which are the exponentially localized so-
lutions in two dimensional spaces [16]. Since then, the
study of higher dimensions has attracted much more
attention. So our goal in this manuscript is to ex-
tend nonautonomous integrable equations to higher-
dimensions by applying the Painlevé test.

2. Investigation of nonautonomous system via
the Painlevé test

In this section, we first give a brief review both of the
Painlevé property and of the Painlevé test. Next we
present nonautonomous higher dimensional systems of
the Burgers and KdV equations by using Painlevé test.
It is widely-known that the Painlevé test in the sense
of Weiss-Tabor-Carnevale(WTC) method [3, 4] is a
powerful tool for investigating autonomous and nonau-
tonomous integrable equations.

2.1. the Painlevé test

Experience has shown that, when a system pos-
sesses the Painlevé property, one is integrable. Weiss
et.al.[3] said that a partial differential equation(PDE)
has the Painlevé property when the solutions of the
PDE are single-valued about the movable, singularity
manifold. They have proposed a technique which de-
termine whether or not a given system is integrable,
that we call WTC’s method:
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When the singularity manifold is determined by

φ(z1, · · · , zn) = 0, (1)

and u = u(z1, · · · , zn) is a solution of PDE given, then
we assume that

u = φα
∞∑

j=0

ujφ
j , (2)

where φ = φ(z1, · · · , zn), uj = uj(z1, · · · , zn), u0 �=
0 are analytic functions of zj in a neighborhood of
the manifold (1) and α is a negative integer (so-called
the leading order). Substitution of (2) into the PDE
determines the value of α and defines the recursion
relations for uj , j = 0, 1, 2, · · · . When the ansatz (2)
is correct, the PDE possesses the Painlevé property
and is conjectured to be integrable.

2.2. Nonautonomous Burgers type equation

We here discuss a following form of equation:

ut + a(x, z, t)u + b(x, z, t)ux + c(x, z, t)uz

+d(x, z, t)uuz + e(x, z, t)ux∂−1
x uz

+f (x, z, t)uxz + g(x, z, t) = 0, (3)

where d(x, z, t) + e(x, z, t) �= 0, f(x, z, t) �= 0 and
subscripts with respect to independent variables de-

note partial derivatives, for example, ux =
∂u

∂x
,

uxz =
∂2u

∂x∂z
etc, and ∂−1

x u :=
∫ x

dx′u(x′). Here

a(x, z, t), b(x, z, t), · · · , g(x, z, t) are functions of two
spatial variables x, z and one temporal variable t. If we
choose a(x, z, t) = b(x, z, t) = c(x, z, t) = g(x, z, t) = 0
and d(x, z, t) = e(x, z, t) = f(x, z, t) = 1, equation (3)
is reduced to the (2+1)-dimensional Burgers equation:

ut + uuz + ux∂−1
x uz + uxz = 0, (4)

which, by setting z = x, reads the (ordinary) Burgers
equation which is widely-known to be linearisable or
integrable.

Our main goal here is finding new integrable equa-
tions. We apply the Painlevé test to equation (3)
and determine the coefficients by conditions from the
Painlevé test. The Painlevé test for equation (3) re-
quires elimination of the non-local term. Through op-
erations of division and differentiation, equation (3) is
transformed to

(eax − aex)uux + (ecx − cex)uxuz

+(edx − dex)uuxuz + (egx − gex)ux

+e(d + e)u2
xuz + (ae + ebx − bex)u2

x − exutux

+euxuxt + deuuxuxz + (ce + efx − fex)uxuxz

−eguxx − aeuuxx − eutuxx − ceuxxuz

−deuuxxuz − efuxxuxz + efuxuxxz = 0, (5)

where a, b, c, d, e, f and g denote
a(x, z, t), b(x, z, t), c(x, z, t), d(x, z, t), e(x, z, t), f(x, z, t)
and g(x, z, t) respectively. We assume the following
singularity manifold expansion with φ = φ(x, z, t) for
u = u(x, z, t):

u = φα
∞∑

j=0

ujφ
j , (6)

where φ and the coefficients uj are analytic functions
of the independent variables x, z, t, and φ(x, z, t) = 0
defines the singularity manifold. By a leading order
analysis, substituting

u = φαu0, (7)

into equation (5), we obtain α = −1 and u0 �= 0.
By the substitution of expansion (7) with α = −1
into equation (5), the recursion relations for the uj

are presented as follows,

(j − 1)(j − 2)(j + 1)e(x, z, t)f(x, z, t)2φ4
xφzuj

= F (uj−1, · · · , u0, φt, φx, φz, · · · ), (8)

where the explicit dependence on t, x, z of the right-
hand side comes from that of the coefficients. It is
found that the resonance occur at

j = −1, 1, 2. (9)

Let us note here that the leading order and resonances
are the same result as for a (2+1)-dimensional Burgers
equation (4). From recurrence relations, we find

j = 0 : u0 =
2f

d + e
φx, (10)

j = 1 :
8e2f2z

{d + e}4
×

[
{fz(d + e) − f(dz + ez)}φ5

x

− {fx(d + e) − f(dx + ex)}φ4
xφx

]
= 0,(11)

j = 2 :
1

(d + e)5

[
4ef 3(d − e)(d + e)2{φ2

xφxxφxz

+ φ2
xφxxxφz − φ2

xxφxφz − φ3
xφxxz} + · · ·

+ f(u1(dz + ez) + 3bx − 2fxz)
)}]φ4

x

]

= 0, (12)

in lower orders. Now we look into cases pass the
Painlevé test. We take into account only following
cases

1. e = 0, f �= 0,

2. e �= 0, f �= 0, d = d(t), e = e(t), f = f(t),

3. e �= 0, f �= 0, f = (d + e) exph(t),
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where h(t) is a constant of integration with respect
to x and z. It is easily checked that Cases 1 is not
determined the leading order and resonances. And it
is easy to see that Case 2 is a special case of Case 3.
Now we discuss following form of equation for Case 3:

ut + a(x, z, t)u + b(x, z, t)ux + c(x, z, t)uz

+d(x, z, t)uuz + e(x, z, t)ux∂−1
x uz

+ exp{h(t)}{d(x, z, t) + e(x, z, t)}uxz

+g(x, z, t) = 0. (13)

Substituting (6) into equation (13), we find

j = 0 : u0 = 2 exp{h(t)}φx,

j = 1 : u1 : arbitrary,

from the recurrence relations (10) and (11). For j = 2,
we have

4 exp{2h(t)}(ebx − bex − ae − eh′(t))φ4
x

+4 exp{2h(t)}(ecx − cex)φ3
xφz

+4 exp{3h(t)}e(d − e)(φ2
xφxxφxz − φ2

xxφxφz

−φ3
xφxxz + φ2

xφxxxφz) − 4 exp{2h(t)}exφ3
xφt

+4 exp{3h(t)}(edx − dex)φ2
xφxxφz = 0. (14)

Only when setting

c = c(z, t), d = d(z, t), e = d(z, t),
a(x, z, t) = bx(x, z, t) − h′(t), (15)

the resonance at j = 2 occurs. Here ′ means an ordi-
nary derivative with respect to the temporal variable
t. This leads to a nonautonomous (2 + 1)-dimensional
Burgers equation:

ut + {bx(x, z, t) − h′(t)}u + b(x, z, t)ux + c(z, t)uz

+d(z, t)uuz + d(z, t)ux∂−1
x uz

+2 exp{h(t)}d(z, t)uxz + g(x, z, t) = 0. (16)

From the arbitrariness of resonance functions u1 and
u2, we can set a generalized Cole-Hopf transformation:

u = u0φ
−1 = 2 exp

{
h(t)

}φx

φ
. (17)

In the case of g(x, z, t) = 0, by this transformation,
equation (16) is reduced to a linear equation,

φt + b(x, z, t)φx + c(z, t)φz

+2 exp
{
h(t)

}
d(z, t)φxz = 0. (18)

Setting z = x, the nonautonomous (2+1)-dimensional
Burgers equation (16) is reduced to one in reference
[5], which demonstrates that nonautonomous lower di-
mensional Burgers equation can be reduced to the au-
tonomous Burgers equation if terms satisfy a compat-
ibility condition.

2.3. Nonautonomous KdV type equations

We discuss a following higher dimensional KdV type
equation for u = u(x, z, t):

ut + a(x, z, t)u + b(x, z, t)ux + c(x, z, t)uz

+d(x, z, t)uuz + e(x, z, t)ux∂−1
x uz

+f (x, z, t)uxxz + g(x, z, t) = 0. (19)

Equation (19) includes the standard higher dimen-
sional KdV one, so-called Calogero-Bogoyavlenskii-
Schiff (CBS) equation[17]:

ut + uuz +
1
2
ux∂−1

x uz +
1
4
uxxz = 0, (20)

which, by setting z = x, reads the (ordinary) KdV
equation which is well-known to be integrable. We de-
termine the coefficients of (19) to pass the Painlevé
test. Here a potential field U = U(x, x, t) for the orig-
inal one u is defined as

u = Ux, (21)

since the non-local term of equation (19) should elim-
inate to perform the Painlevé test. Then we are now
looking for a solution of equation (19) in terms of U
in the Laurent series expansion:

U = φα
∞∑

j=0

Ujφ
j , (22)

where Uj are analytic functions of the independent
variables in a neighborhood of φ = 0. In this case,
leading order is −1 and

U0 =
12f (x, z, t)

d(x, z, t) + e(x, z, t)
φx, (23)

is given. Then, it is found that the resonance occur at

j = −1, 1, 4, 6, (24)

substituting the expansion (22) with α = −1 into
equation (19) in terms of U . We are succeeded in
finding four types of the nonautonomous higher di-
mensional KdV equation. We shall display only two
types, one of them is

ut +
2
3
x
{
α(z, t) − β(t) + cz(z, t)

}
ux + c(z, t)uz

+
(

d′(t)
d(t)

− f ′(t)
f(t)

+
4
3
{
α(z, t) − β(t) + cz(z, t)

})
u

+d(t)uuz +
d(t)
2

ux∂−1
x uz + f(t)uxxz + g(z, t)

= 0, (25)

281



and another is

ut +
(

2B1(z, t) − η′(t)
)

u + c(z, t)uz +
{
B1(z, t)x

+B2(z, t)
}
ux + d(z, t)uuz +

d(z, t)
2

ux∂−1
x uz

+
3
2

exp{η(t)}d(z, t)uxxz + g(z, t) = 0, (26)

where α(z, t), β(t), B1(z, t), B2(z, t), η(t) are arbi-
trary functions. We note that the rate of coefficients
of uuz and ux∂−1

x uz are just 2, this magic number is
shared by equation (25), (26) and also the CBS equa-
tion (20). Setting z = x, the nonautonomous (2 + 1)-
dimensional KdV equations (25) and (26) are reduced
to ones in reference [5, 8, 9].

3. Conclusions

In this manuscript, we have presented new nonau-
tonomous (1 + 1)- and (2 + 1)- dimensional integrable
equations. In section 2 we have reviewed the Painlevé
test and nonautonomous higher dimensional Burgers
equations is constructed. Via truncating the Laurent
expansion, we have seen the generalized Cole-Hopf
transformation. And then nonautonomous higher di-
mensional KdV equations have been also obtained. In
reference [18], exact solutions, hierarchies and families
of nonautonomous higher dimensional equations (16),
(25) and (26) are reported in details.
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sis and reducibility to the canonical form for the
generalized Kadomtsev-Petviashvili equation”, J.
Math. Phys. 32, pp.69-72, 1991.

[13] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H.
Segur, “The inverse scattering transform-Fourier
analysis for nonlinear problems”, Studies in Appl.
Math. 53, pp.249-315, 1974.

[14] F. Calogero and A. Degasperis, “Exact solu-
tion via the spectral transform of a generalization
with linearly x-dependent coefficients of the modi-
fied Korteweg-deVries equation”, Lett. Nuovo. Ci-
mento 22, pp.270-279, 1978.

[15] R. C. Cascaval, “Variable Coefficient KdV Equa-
tions and Waves in Elastic Tubes”, Preprint, 2002.

[16] M. Boiti, J. J. -P. Leon, L. Martina and F.
Pempinelli, “Scattering of localized solitons in the
plane”, Phys. Lett. A 132, pp.432-443, 1988.

[17] S.-J. Yu, K. Toda, N. Sasa and T. Fukuyama,
“N soliton solutions to the Bogoyavlenskii-Schiff
equation and a quest for the soliton solution in
(3 + 1) dimensions”, J. Phys. A31, pp.3337-3347,
1998.

[18] T. Kobayashi and K. Toda, “ Extensions of
nonautonomous soliton equations to higher dimen-
sions” , Preprint, 2004.

282


