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Abstract—Surrogate data methods are typically
used to preclude the possiblity that a given time se-
ries was generated by a simple linear system before
one reaches for more exotic sources. In this communi-
cation we describe an alternative surrogate technique
which mimics the underlying stationary deterministic
dynamics observed in a time series. We illustrate the
method with two seperate applications. In the first
application we employ this method to provide a distri-
bution of statistic values for invariant measures esti-
mated from trajectories sampled from the (presumed)
stationary determinstic dynamical system. The sec-
ond, separate, application computes the certainty with
which nonlinear predictions could be made directly
from the time series.

1. A stationary deterministic dynamical sys-

tem

Various dynamic invariants are often estimated from
time series. It has long been known that these esti-
mates (and in particular correlation dimension esti-
mates) alone are not sufficient to differentiate between
chaos and noise. Most notably, the method of surro-
gate data [1] was introduced in an attempt to reduce
the rate of false positives during the hunt for physi-
cal examples of chaotic dynamics. Although it is not
possible to find conclusive evidence of chaos through
estimation of dynamic invariants, surrogate methods
are used to generate a distribution of statistic values
(i.e. the estimates of the dynamic invariant) under the
hypothesis of linear noise. In the most general form,
the standard surrogate methods generate the distribu-
tion of statistic values under the null hypothesis of a
static monotonic nonlinear transformation of linearly
filtered noise. Therefore, these standard methods al-
low one to preclude the possibility that a given time
series is a realisation of such a stochastic process.

In this communication, we introduce a significant
generalisation of a recent surrogate generation algo-
rithm [2, 3]. The pseudo-periodic surrogate (PPS)
algorithm described in [2, 3] allows one to generate
data consistent with the null hypothesis of a noise
driven periodic orbit — provided the data exhibits
pseudo-periodic dynamics. Previously, this algorithm
has been applied to differentiate between a noisy limit

cycle, and deterministic chaos. By modifying this al-
gorithm and applying it to noisy time series data, we
are able to generate surrogate time series that are inde-
pendent trajectories of the same deterministic system,
measured via the same inperfect observation function.
That is, there is a deterministic dynamical system
subject to additive independent and identically dis-
tributed (i.i.d.) observational noise.

This ensemble of attractor trajectory surrogates
(ATS) can then be used to estimate the distribution
of statistic values for estimates of any statistic derived
from these time series.

The statistics of greatest interest to us are dynamic
invariants of the underlying attractor. For the pur-
poses of illustration we limit the current study to the
correlation dimension and entropy estimates provided
by the Gaussian kernel algorithm (GKA) [4, 5]. Our
choice of the GKA is entirely arbitrary, but based on
our familiarity with this particular algorithm. True
estimation of dynamic invariants from noisy data is
a process fraught with difficulty, in this paper we are
only concerned with estimating the distribution of es-
timates.

An important application for the ATS technique is
to determine whether dynamic invariants estimated
from distinct time series are significantly different.
The question this technique can address is whether (for
example) a correlation dimension of 2.3 measured dur-
ing normal electrocardiogram activity is really distinct
from the correlation dimension of 2.4 measured during
an episode of ventricular tachycardia [7, 8]. Estimates
of dynamic invariants (including the GKA [4, 5]) often
do come with confidence intervals. But these confi-
dence intervals are only based on uncertainty in the
least-mean-square fit, not the underlying dynamics.
Conversely, it is standard practice to obtain a large
number of representative time series for each (suppos-
edly distinct) physical state, and compare the distri-
bution of statistic values derived from these. But, this
approach is not always feasible: in [7, 8] for exam-
ple, the problem is not merely that these physiological
states are difficult and dangerous to replicate, but that
inter-patient variability makes doing so infeasible.

Alternatively, by fixing the initial condition of the
ATS ensemble it is possible to generate a distribtion
of possible future states of the underlying dynamical
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system. This is the second application described in
this communication.

In the remainder of this communication we describe
the new ATS algorithm and demonstrate that it can
be used to estimate the distribution of dynamic invari-
ant estimates from a single time series of a known dy-
namical system (we demonstrate this with the chaotic
Rössler and Lorenz systems).

In section 2 we describe the algorithm we employ
in this paper. In section 3 we present a numerical
case study illustrating the first major application of
this method, and in section 4 we illustrate the effect of
fixing the initial condition of the ATS ensemble (the
second application). Finally, in section 5 we present
our conclusions.

2. Attractor trajectory surrogates

The ATS algorithm may be described as follows.
Embed a scalar time series {xt} to obtain a vector
timeseries {zt} (of length N). The choice of embed-
ding is arbitrary, but has been adequately discussed
in the literature (there are numerous works in this
field, [11] for example, provides references to several
of them). From the embedded time series, the surro-
gate is obtained as follows. Choose an initial condition,
w1 ∈ {zt|t = 1, . . . , N}. Then, at each step, choose the
successor to wt with probability

P (wt+1 = zi+1) ∝ exp
−‖wt − zi‖

ρ
(1)

where the noise radius ρ is an as-yet unspecified con-
stant. In other words, the successor to wt is the suc-
cessor of a randomly chosen neighbour of wt. Finally,
from the vector time series {wt} the ATS {st} is ob-
tained by projecting wt onto [1 0 0 0 · · · 0] (the first
coordinate). Hence

st = wt · [1 0 0 0 · · · 0] (2)

In [2, 3] this algorithm was shown to be capable of
differentiating between deterministic chaos and a noisy
periodic orbit. In the context of the current commu-
nication we assume that {xt} is contaminated by ad-
ditive (but possibly dynamic) noise and we choose the
noise radius ρ such that the observed noise is replaced
by an independent realisation of the same noise pro-
cess. Furthermore, we assume that the deterministic
dynamics are preserved by suitable choice of embed-
ding parameters. Under these two assumptions, {zt}
and {wt} have the same invariant density and {xt} and
{st} are therefore (noisy) realisation of the same dy-
namical system with (for suitable choice of ρ) the same
noise distribution. We illustrate this more precisely in
the following section.

As in [2, 3] the problem remains the correct choice
of ρ. This is the major difference between the ATS

described here and the PPS of [2, 3]. However, since
the null hypothesis we wish to address is different from
(and more general than) that of the PPS, choice of ρ
for the ATS is less restrictive. For t = T given, one
can compute P (wt+1 %= zi+1 ∧ ‖wt − zi‖ = 0|t = T )
directly from the data by applying (1). Assuming the
process is ergodic 1 one can then sum

P (wt+1 %= zi+1 ∧ ‖wt − zi‖ = 0) = (3)

1

N

N∑

T=1

P (wt+1 %= zi+1 ∧ ‖wt − zi‖ = 0|t = T )

to get the probability of a temporal discontinuity 2

in the surrogate at any time instant. There is a 1:1
correspondence between a value p = P (wt+1 %= zi+1 ∧
‖wt − zi‖ = 0) and ρ, and we choose to implement (1)
for a particular value of p (i.e. a particular transition
probability) rather than a specific noise level. In what
follows we find that studying intermediate values of p
(p ∈ [0.05, 0.95]) is sufficient. However, the significant
point is that p ∈ [0.05, 0.95] corresponds to a very
narrow range of values of ρ.

3. Surrogate distribution generation

We now demonstrate the applicability of this
method for noisy time series data simulated from
the the Rössler differential equations (during “broad-
band” chaos). We integrated (1000 points with a
time step of 0.2) the Rössler equations both with and
without multidimensional dynamic noise at 5% of the
standard deviation of the data. We then studied the
x-component after the addition of 5% observational
noise. We selected embedding parameters using the
standard methods (de = 3 and τ = 8) and then com-
pute ATS surrogates for various exchange probabilities
p = 0.05, 0.1, 0.15, . . . , 0.95. For the data set and each
ensemble of surrogates we then estimated correlation
dimension D, entropy K and noise level S using the
GKA algorithm [4, 5] (GKA embedding using embed-
ding dimension m = 2, 3, . . . , 10 and embedding lag
of 1). Figure 1 depicts the results when the GKA is
applied with embedding dimension m = 4 and the ex-
change probability is p = 0.35. Other values of m
gave equivalent results, as did various values of p in
the range [0.2, 0.8].

For p ∈ [0.2, 0.8] we found that the estimate of noise
S from the GKA algorithm coincided for data and sur-
rogates, but this was often not the case for extreme
values of p. Therefore, this estimate of signal noise
content is a good indicator of the accuracy of the dy-
namics reproduced by the ATS time series. Further-
more to confirm the spread of the data we also esti-

1This assumption is sufficient rather than necessary.
2By temporal discontinuity we mean that wt = zi but

wt+1 != zi+1.
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Figure 1: Distribution of statistics D, K and S for short and noisy realisations of the Rössler system.

The histogram shows the distribution of statistic estimates (D, K and S) for 500 ATS time series generated
from a 1000 point realisation of the Rössler system. The solid vertical line on each plot is the comparable value
for the data and the stars marked on the horizontal axes are for 20 independent realisations of the same process.
The top row of figures depicts results for the Rössler system with observational noise only, the bottom row of
figures has both observational and dynamic noise. Panels (a) and (d) show correlation dimension estimates, (b)
and (e) are entropy, and (c) and (f) are noise level.

mated D, K, and S for 20 further realisations of the
same Rössler system (with different initial conditions).
In each case, as expected, the range of these values lies
well within the range predicted by the ATS scheme.

4. Ensemble prediction

In this section we show how the same method can
be used to provide an ensemble prediction of a deter-
ministic system and therefore a measure of nonlinear
predictability. Although the underlying algorithm is
identical to that described in the previous section the
application here is different.

We are not concerned with generating a distribution
of independent sample of the same dynamical system,
but rather a distribution of trajectories observed from
the dynamical system for a fixed initial condition.

That is, in section 3 we chose different random initial
conditions and followed these around the attractor. In
this section we present an application of this method
by simply fixing the initial condition w1 and then gen-
erating a host of simulations. With a suitable (moder-
ate) choice of noise radius ρ, as the trajectories iterate
around the attractor they will gradually diverge from
one another under the effect of the underlying system

dynamics.
In figure 2 we show an example of this for the Lorenz

system. It is well known that in certain regimes (in-
cluding the one illustrated in figure 2), the Lorenz
system is chaotic. Nearby trajectories, and therefore
the forecast ensemble diverge exponentially. However,
from closer examination of the distribution of trajec-
tories in figure 2, the presence of the central separatrix
(at the origin in the original system co-ordinates) can
also be discerned.

5. Conclusion

We have shown that provided time delay embedding
parameters can be estimated adequately, and an ap-
propriate value of the exchange probability is chosen,
the ATS algorithm generates independent trajectories
from the same dynamical system. When applied to
data from the Rössler system we confirm this result,
and we demonstrate its application to experimental
data.

When the ATS algorithm is applied to generate in-
dependent realisation for a hypothesis test, one is able
to construct a test for non-stationarity. If two data
sets do not fit the same distribution of ATS data then
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Figure 2: Distribution of trajectories of the Lorenz system. A probability distribution of future evolution
of the Lorenz system from built from 1000 preceeding points. The dashed line is the median of the predictions
depicted as a probability distribution (colour scale is linearly proportional to the log(Prob), high likelihood is
dark). Note that one observed that the uncertaintiy of the Lorenz system is shown to be dependent on the
central seperatrix.

they can not be said to be from the same determinis-
tic dynamical system. Unfortunately, the converse is
not always true and the power of the test depends on
the choice of statistic. The utility of this technique
as a test for stationarity remains a subject for future
investigation.
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