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Abstract—Sugase et al. analyzed the time-course of the
information carried by the firing of face-responsive neu-
rons in the IT cortex. They found that the initial transient
firing correlated well with a rough categorization, and the
subsequent sustained firing represented more detailed in-
formation. In order to investigate the mechanism of such
temporal dynamics, we employ a simple correlation-type
associative memory model with distributed, hierarchically
correlated memory patterns. We found that the retrieval dy-
namics can qualitatively replicate the temporal dynamics
of face-responsive neurons. Based on this model, we pro-
pose a new physiological experiment employing a noise-
degraded image.

1. Introduction

Sugase et al. [1] analyzed the time-course of the infor-
mation carried by the firing of face-responsive neurons in
the IT cortex, while performing a fixation task of monkey
and human faces with various expressions, and simple geo-
metrical shapes. They found that the initial transient firing
correlated well with a rough categorization (e.g., face vs.
non-face stimuli), and the subsequent sustained firing rep-
resented more detailed information (e.g., specific person
or expression). They divided neurons into three groups,
called dual-, fine- and rough-neurons, based on the infor-
mation the neurons coded. Their results suggest that the
neuron firing pattern is initially a superposition of patterns
representing different faces or expressions, but it then con-
verges to a single pattern representing a specific face or
expression. In order to investigate the mechanism of such
temporal dynamics, we employ a simple correlation-type
associative memory model with distributed, hierarchically
correlated memory patterns [2, 3], which may mimic their
input stimuli. The model dynamics is stable not only for
stored memory patterns but also for mixed states, which
are superpositions of memory patterns. Based on analytical
and numerical studies, we found that the retrieval dynamics
can qualitatively replicate the temporal dynamics of face-
responsive neurons as follows. Initially, the network state
approaches a mixed state that is a superposition of patterns
representing different persons or expressions. After that it

diverges from the mixed state, and finally converges to a
single memory pattern representing a specific person or ex-
pression. The model neurons can be classified into rough-,
fine and dual neuron groups according to whether they are
active in the mixed state or the specific memory pattern(s).
The time constant of groups having the finer or rougher in-
formation is slower or faster, respectively. The neurons in
the slowest group tend to become the dual neurons. Based
on this model, we propose a new physiological experiment,
where a noise-degraded image is employed as in the work
of the Shidara et al. [4] (see also [5]). We conjecture that
there is a critical noise value above which temporal behav-
iors of fine and dual-neurons dramatically change because
the network state converges not to the memory pattern but
to the mixed state.

2. Summary of experimental findings

We summarize the results of Sugase et al. [1]. An
information-theoretic analysis [7, 8] was applied to qual-
itatively measure neural responses according to two differ-
ent categorical levels. One level consisted of rough catego-
rizations such as face vs. non-face stimuli, the other level
corresponded to fine (more detailed) categorizations (e.g.,
facial expression or a specific person). They measured the
temporal change of the mutual information I(S ; R) repre-
sented by the entropy H(·),

I(S ; R) = H(S ) − H(S |R)

=
∑

s∈S
(−p(s) log p(s))

− <
∑

s∈S
(−p(s|r) log p(s|r)) >p(r), (1)

where S and R are the set of the stimuli s and the neuronal
responses (spike counts) r, respectively. The bracket in eq.
(1) stands for the average of the probability p(r) of the spike
count r. p(s) and p(s|r) are the prior probability of stimulus
s and the conditional probability of stimulus s given by the
spike count r, respectively.

Sugase et al. found that the initial transient firing corre-
lated well with a rough categorization (e.g. face vs. non-
face stimuli), and the subsequent sustained firing repre-
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Figure 1: Schematic diagram of neural dynamics of face-responsive cells in IT cortex.

sented finer information regarding more detailed catego-
rizations. Their results suggest that the neuron firing pat-
tern is initially a superposition of patterns representing dif-
ferent faces or expressions, but it then converges to a sin-
gle pattern representing a specific face or expression. Mat-
sumoto et al. applied principal component analysbis and
mixture of Gaussian analysis. They found that the popu-
lation vectors of neural firing split into three clusters cor-
responding to human faces, monkey faces and other sim-
ple shapes in the early phase (90-140msec), and that these
three clusters split into sub-clusters corresponding to finer
categorizations in the later phase (140-190msec) [9].

Let us reinterpret this transient phenomenon in the man-
ner presented below. The individual facial expressions (or
faces) are encoded with the distributed representation as
shown in Fig.1(a). Each circle represents a excited neuron
in the neuron pools denoted by the rectangles. We might
be able to say that a mixed state appears in the intermediate
part of dynamics of neurons, and the network state finally
converges to the memory pattern schematically shown in
Fig. 1(b). The main purpose of the present work is to in-
vestigate the mechanism of such temporal dynamics.

3. Model

A recurrent neural network consisting of N neurons with
an output function sgn(·) is discussed, where sgn(u) = +1
for u ≥ 0, otherwise sgn(u) = −1. We employ a case of
the thermodynamic limit (N → ∞) and the synchronous
dynamics,

xt+1
i = sgn(

N∑

j�i

Ji jx
t
j), (2)

where xt
i represents a state of the i-th neuron at discrete time

t, and Ji j denotes a synaptic weight from the j-th neuron to
the i-th neuron. In order to mimic the stimuli of Sugase
et al., we utilize a set of ultrametric patterns [6]. For sim-
plicity, we treat two stages of hierarchy which is the most
simple case. This can be easily extended to more complex
situations of multistage and/or inhomogeneous hierarchies,
and the results do not qualitatively change. One can use
many procedures to make the set of ultrametric patterns,
but we employ the following method. Each element ξµνi of
memory pattern ξµν is independently generated using eqs.

(3) and (4),

Prob[ξµi = ±1] = 1/2, (3)

Prob[ξµνi = ±1] = (1 ± bξµi )/2. (4)

The distance between memory patters ξµν with the same
parent ξµ is represented by a correlation matrix B,

(B)νν′ = E[ξµνi ξ
µν′
i ] = δνν′ + b2(1 − δνν). (5)

If their parents are different, they are completely orthogo-
nal to each other. Thus, we have the two stage ultrametric
structure in the set of ξµν’s. The synaptic coupling is deter-
mined by a simple correlation learning,

Ji j =
1
N

αN∑

µ=1

s∑

ν=1

ξ
µν
i ξ
µν
j . (6)

The number of clusters is αN, where α is called the load-
ing rate and each cluster has s memory patterns. Many
researchers have analyzed this model (for example, [2]) or
our analyses in [3]. Other more complex and sophisticated
learning methods storing the hierarchically correlated pat-
terns have been proposed compared with eq. (6) (for ex-
ample, [10]). However, most of them have two kinds of
essential drawbacks. One is from an information-theoretic
view point. These method are not local with respect to the
pattern suffixes, µ, ν; for example, they need an informa-
tion about which cluster the memory pattern belongs to.
The other one is strictly essential in treating the target ex-
periment of Sugase et al. The ultrametric structure of the
memory pattern is completely destroyed in these learning
methods. As a result, we can definitely not mimic the tran-
sient phenomena observed by Sugase et al. by using these
methods.

4. Equilibrium properties

In the present model, not only the stored pattern ξµν but
also mixed state, ηµ = sgn(

∑s
ν=1 ξ

µν), which is a nonlinear
superposition of the memory patterns, ξµν, ν = 1, · · · , s, is
stable. In order to investigate the stabilities of the memory
patterns ξµν and the mixed states ηµ, we have derived order
parameter equations that describe the the equilibrium state
of eqs. (2) through (4) using the SCSNA [11]. Details of
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Figure 2: (a): Phase diagram of equilibrium states. (b): Retrieval dynamics when s = 3, b = 0.45 and α = 0.0087. (c):
Schematical description of trajectories denoted by dashed and dash-dotted lines in (b).
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Figure 3: Retrieval dynamics of each sub-lattice. (a):
Memory retrieval denoted by dashed line in Fig. 2(b). (b):
Mixed state retrieval denoted by dash-dotted line in Fig.
2(b).

this section are described in [3]. We solve the order param-
eter equations, and show in Fig. 2(a) the resultant phase
diagram of s = 3 on a parameter space of the loading α
and b, representing the correlation among the memory pat-
terns in the same cluster. The dashed and solid lines rep-
resent the storage capacities for the memory pattern and
the mixed state, respectively. Each equilirium state be-
comes unstable above its value of storage capacity. When
b ≤ bC = 1/

√
s − 1 = 1/

√
2, the memory patterns and the

mixed states coexist as equilibria.

5. Dynamical properties

We employ the full-order version of the statistical neuro-
dynamical method [12, 13] to investigate the retrieval pro-
cess. The static and dynamic properties obtained by this
theory were confirmed fairy well in extensive numerical
simulations. Fig. 2(b) shows the trajectories of temporal
evolutions of overlaps of the state xt with ξ1,1 or ξ1,2, re-
spectively,

m1,ν
t =

1
N

N∑

i=1

ξ1,νi xt
i. (7)

The parameters are set to α = 0.087, b = 0.475 and s = 3,
respectively. Since the × in the bi-stable region of Fig. 2(a)
shows this parameter set, the memory pattern (ξ in Fig.
2(b)) and two kinds of the mixed states (η and η′) coex-
ist. We have set the initial state x0 as Prob[xi = ±1] =
(1 ± m1,1

0 ξ
1,1
i )/2. Since we obtain m1,2

0 = m1,3
0 = b2m1,1

0

in this case, only m1,1
t and m1,2

t have been plotted, and
the initial states are arranged in the line of m1,2 = b2m1,1.
The solid and dotted lines denote the theoretical and com-
puter simulation result (N=30,000), respectively. All tra-
jectories regarding ξ1,1 retrieval cases are inside the line
m1,2 = b2m1,1 as shown in Fig. 2(b). This fact means
that the network state state approaches the mixed state at
the first stage of the retrieval process. After that the net-
work state parts from the mixed state, and finally converges
to ξ1,1. These trajectories are schematically shown as the
red dashed line in Fig. 2(c). The memory patterns and the
mixed states are embedded in the surface of the cone and
the equi-distant line, respectively.

Sugase et al. divided neurons into three groups, called
dual-, fine- and rough-neurons, based on the information
they code [1]. On the other hand, we divide the (model-
)neurons into 2s groups using the sub-lattice method. For
example, a model neuron xi is such that (ξ1,1i , ξ

1,2
i , ξ

1,3
i ) =

(+1,+1,+1). Thus, we have eight groups for s = 3 accord-
ing to (ξ1,1i , ξ

1,2
i , ξ

1,3
i ) = (±1,±1,±1). These eight groups

can be effectively classified into three groups,

(ξ1,1i , ξ
1,2
i , ξ

1,3
i ) = (+1,+1,+1), (+1,+1,−1), (+1,−1,−1),

(8)
because we discuss the 50% firing rate case, and have
the symmetry between m1,2

t and m1,3
t . Hereafter, we call

the neuron xi with (ξ1,1i , ξ
1,2
i , ξ

1,3
i ) = (+1,+1,+1) the

“(+1,+1,+1) neuron” and so on. The (+1,−1,−1) neu-
ron codes the largest information about a classification of
ξ1,1 among the three groups, while the (+1,+1,+1) one
does not have this information. On the other hand, the
(+1,+1,+1) neuron has much information about the cluster
µ = 1 for the memory patterns ξ1,ν, because of their finite
correlation, i.e., b � 0. Thus, the (+1,−1,−1) neuron codes
the fine information on the detailed categorization among
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ξ1,ν, while the (+1,+1,+1) codes the rough categorization.
From these considerations, we find correspondence be-
tween the fine-neuron of Sugase et al. and the (+1,−1,−1)
neuron as well as that between the rough-neuron and the
(+1,+1,+1) neuron. Each line in Fig. 3(a) shows the tem-
poral evolution of the averaged output of each neuron group
for the red dashed line in Fig. 2(b). The time constant of the
relaxation computation for (+1,+1,+1) and (+1,−1,−1) is
the fastest and slowest, respectively. This theoretical find-
ing coincides with the results of Sugase et al. as described
in §2. The nonmontonic evolution of the average output
on the (+1,−1,−1) neuron group around t = 2 implies
that some of the (+1,−1,−1) neurons, which correspond to
the fine-neurons, tend to become the dual-neurons, because
the number of the (+1,−1,−1) neurons with the state −1,
which corresponds to the mixed state, is locally maximized
around t = 2. The dual-neuron dually codes the different
categorization classes (rough and fine) using the different
time domain. Their initial transient firing correlates with
the rough categorization, and the sustained firing codes the
finer information.

For the smaller value of the initial overlap m1,1
0 , that is,

the noisy input, the network state converges to the mixed
state rather than the memory state (for example, the blue
dash-dotted line in Fig. 2(b)). This means that a critical ini-
tial overlap m1,1

C exists under which the retrieval dynamics
dramatically change. These trajectories are schematically
shown as the blue dash-dotted line in Fig. 2(c). Each line
in Fig. 3(b) shows the temporal evolution of the averaged
output of each neuron group for the blue dash-dotted line
in Fig. 2(b). The red solid line on the (+1,−1,−1) neuron
suggests that the temporal evolutions of (+1,−1,−1) neu-
rons dramatically change when m1,1

0 < m1,1
C . It would be

very interesting if this dramatic change could be obtained
experimentally. One candidate out of many is to employ
a noise-degraded image as the Shidara et al. have done [4]
(see also [5]). We conjecture that there is a critical noise
value above which the temporal behaviors of fine and dual-
neurons dramatically change as denoted by the red solid
line in Fig. 3(b). This is because the network state con-
verges not to the memory pattern but to the mixed state.

We have already presented a more realistic model based
on the excitatory-inhibitory network to properly treat the
regulator mechanism of the mean firing rate [14]. The re-
sults of the realistic model more accurately agreeed with
the behavior of IT cortex neurons suggested by Sugase et
al. than the previously discussed 50% firing model.

6. Discussion

Recently, Parga and Rolls have used the mixed state
as a mechanism of invariant recognition under a coordi-
nate transformation [15]. Their model has the following
duality with the present model. We have employed the
structured memory patterns and the unstructured learning
method of eqs. (3) through (6), while they utilized the

unstructured memory patterns and the structured learning
method. These two variants of the Hopfield model share the
same theoretical structure as shown in [15] and the present
paper. However, the two variants have a completely dif-
ferent dynamical property from each other. We conjecture
that Parga and Rolls’ model will be unable to observe the
initial transient effect described in the present paper. Thus,
by comparing these variants with physiological data of the
higher visual areas, we may discuss how complex ultra-
metric structures in the external visual world are encoded
in these visual areas.
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