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Abstract—Organic free radicals play important roles indent on the contents of the component spectra. Svistunenko
many physiological and pathological pathways in biologiet al [3] proposed a simplified method that utilizes a set
cal systems. These radicals can be detected and quantifafdnixtures of varying compositions, but the method still
by their EPR spectra. The measured EPR spectra are ofteguires a priori information concerning the shapes of the
mixtures of pure spectra of severatfdrent free radicals component spectra. Since the component spectra may be
and other chemicals. Blind source separation can be ayery difficult to be acquired as a priori, generic species free
plied to estimate the pure spectra of interested free radicataethods not relying on a priori knowledge of the shapes
Because the pure EPR spectra are often not independentbthe pure component spectra will be of great advantage.
each other, the ICA based approach cannot accurately geenerally, as in [3], such methods also depend on multi-
the wanted spectra. In this paper we present a sparse cqoe mixtures with distinct compositions. A representative
ponent analysis method, which exploiting the sparsity odipproach was proposed in [4] where a self modeling pro-
the EPR spectra, to reliably extract the pure source spewmedure and a procedure utilizing the symmetric property of
tra from their mixtures with high accuracy. The proposedhe spectra were applied with a preprocessing by principle
method can also be used in other similar applications, @omponent analysis (PCA). PCA has been widely used in
be utilized in the sparse decomposition approach to blinghalytical spectroscopy, and it can decompose the mixtures

source separation. into pure components when the peaks in each component
are well separated from those of every others [5]. If peaks
1. Introduction of different component spectra are overlapped, they must

be linear combinations of the principle components of the
Independent component analysis (ICA) and blind sourdeCA analysis, and some post-processing, as used in [4], is
separation (BSS) have many applications in various aretgquired to get the pure spectra. Another post-processing
including communication, acoustics, radar, and biomedicalpproach used in [5] assumes that each component spec-
engineering. Recently they have found their applicatiorsum has only one peak.
L%;E?C;Lﬂc?gfzssyO[fllEIeéggnszgg?rrg‘;?:;;CiSRS?;?lg?rzceRealizing that the p_roblem that thg above species-fr_ee
the more widely known MR spectroscopy, while the formefhethods aims to solve is gxactly the bI|r_1d source separatlon
. . ' problem familiar to the signal processing community, the
using paramagnetic resonance. authors of this paper, for the first time, proposed an ICA-
EPR spectroscopy is a standard way to detect and quan- ' '

titatively measure organic free radicals generated in bio-ased BSS approach in [1] with promising results. Assum-

, o ing the sources, i.e. the component spectra in this study, are
logical systems. Because of the lack of sensitivity of g P P Y

specific free radical in the current EPR technique, the si%é?rflit;alt%nS%T\;SjL;)SSIlinAawhlir;ﬂeizeigﬂ(;?;’nwet?assi dpz)onb—
nals (called EPR spectra) measured may be a superimpqns y ' y

tion of the spectra of all existing free radicals and. mavb |'§1her order statistics. Representative ICA methods are
P 9 » may ?‘Jé%DE [6], InfoMax [7], and FastICA [8]. Alternatively,

other chemicals. The superimposed spectra can be cal L .
. ; . L second order statistics based methods can also be applied
as multi-component mixtures, while each individual spec-

i that titutes th it . lled t? solve the BSS problem if the sources are statistically un-
srugzztru?n COSHUSCLUS?JS or eogri]tli)(()rzjrlee Z(Ijss (:£ a:iﬁlt ainCOT;:_neréorrelated over a set of time lags [9, 10]. However, since in
titpative aﬁal sis of tr?e EPR spectra. es ec)i/all ?/vhen thfact the component EPR spectra are neither completely in-
com onenti ectra are overlap in » €SP y gependent nor completely uncorrelated, the decomposition
P P . ppINng. . result of the BSS approach to mixed EPR spectra analysis
There has been much interest in numerically decompolss—not perfect, as shown in our previous studies in [1]
ing multi-component mixtures of EPR spectra into pure ' '
component spectra. Traditional approach to determine theln this study we propose a novel method to perfectly de-
component spectra is by matching the mixtures manualljompose multi-component EPR spectra mixtures into pure
to the spectra of all known and possible pure component®mponent spectra that employs the sparsity of the compo-

[2]. This approach is not veryflective and highly depen- nent spectra.
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2. The Problem sparse component analysis.

In biological systems, organic free radicals play impor—3
tant roles in many physiological and pathological path-

ways. Such free radicals can be routinely measured by A signal is called sparse if it has some peaks and rela-
the technique of Electron Paramagnetic Resonance (EPRjkly flat area in between the peaks, as shown in Figure 3
spectroscopy. Organic free radicals are too highly reaga b). Denote the two sparse signalsgs) ands,(n), and

tive to be detected without using spin trap agents to eXye have the following two linear mixtures
tend their half-life [11]. However, spin trap agents are

not that ideally species specific. For example, the widely x1(n)
used agents 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline- X2(n)
N-oxide (DEPMPO) for superoxided,*) radical will also
simultaneously trap hydroxyl radicaDH*) in in vivo sys-

Fems [12]'. Consequently, the meas_ured EP.R spectrum Ugz, slopes a%L andc,. It suggests that we can separate

'ng the spin trap agent DEPMPO will be a linear superp the two sparselsources from the two mixtures by determin-
sition of.the spectra of [.)EPMPO adductg of Fhe above th?lg the slopes of the lines in the scatter-plot. The slopes
free radicals if both radicals present, which is common |@Pn be determined by either a C-means clustering based

biological systems. Figure 1 shows typical EPR spectra Q ; :
. ~approach [13] or a potential function based approach [14].
DEPMPO adduct of hydroxyl and that of superoxide, whil oth approaches work well when the sources are sparse

Figure 2 shows two actually measured EPR spectra of mi>é-n ough
tures of hydroxyl and superoxide. '
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which are shown in Figure 3 (c,d). We can see that there are
two distinct lines in the scatter plot af (n) andx,(n), with
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Figure 3: (a,b) Two sparsd-igure 4: Scatter plot of

Figure 1: EPR spectra ofrigure 2: Mixtures of EPR sjgnals; (c,d) Two mixturesthe two mixtures of sparse
free radical adducts (a) hy-SpeCtra shown in Flg 1 of the above two Signa|s sources

droxyl; (b) superoxide

FR—

Since the hydroxyl spectrum and the superoxide spe |
trum are overlapping, without the help of signal separatior -
one cannot tell out from the measured multi-componer? -+~
mixtures the exact quantity of each of the two free rad =
icals. Traditional spectroscopy analysis method such i,
self-modeling does not work well in our case. In fact, the*
multi-component mixture spectra are linear superpositior-,
of pure component spectra, and thus the problem falls in *_® ==& ~& "

600 700 E: N 1.
(b) Sparse separation by the potential function based approach (b) Zoomed plot

a standard blind source separation framework. Exploiting

the model of blind source separation, in our previous studyigure 5: Scatter plot of theFigure 6: (a)J(c) for Fig.2;
we proposed a FastICA approach to solve the problem amglo mixtures shown in Fig.2(b) Zoomed plot of (a)
got improved results [1]. In that study we assume that two

pure EPR spectra are statistically non-Gaussian and inde-However, if the sources are not too sparse, as the case
pendent of each other. However, our assumption of indef EPR spectra of free radicals, it is hard to find the dis-
pendence is not well satisfied. This can be clearly showimct lines and determine their scopes from the scatter plot
by a close examination of the two spectrum shown in Figef the mixtures, as shown in Figure 5 (a). In fact, the po-
ure 1. In fact, the violation of this assumption makes thaential function based approach in [14], where the potential
the ICA method cannot perfectly separate the two overlageinction of this case is shown in Figure 5 (b), cannot reli-
ping pure spectra, as shown in Figure 7 and discussedably separate the two source EPR spectra. So we need to
Section 4. In order to improve the performance of spectrdevelop more reliable methods to separate sparse sources
separation, in the next section we propose an approachfodm their linear mixtures.

E] g 2 0 g E e
(a) Scatter plot of the two mixtures of EPR spectra (a) Sparsity function based approach
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3.1. Sparsity function spectra. The results are shown in Figures 8 and 10. For the

urpose of comparison, we also apply the FastiICA method

The_re may be many ways to qu_ant|fythe degree of spar 5 the same simulated spectra, and the results are shown in
of a signal. A sparse signal has its energy concentrated lkri]gures 7 and 9

some narrow segments of the signal. Notice that the func-
tion a® + b?, subject toja] + |b| = 1, has its maximum of
1 when either or b is zero and its minimum o% when

a=b-= % so we can define the sparsity of a signal as it’
total energy normalized to the sum of the absolute values +——=——+— 5= o 5 5 o 5 & 5 & o
the signal. Mathematically the sparsity function of Signa. -/ Emieereri e s e e e

x(n) can be defined as ‘
e
_ ZnX¥() Z

Sy = . (2) e e s e o
(Zn IX(N)1)?

) Estintd uparaid oo ey FantCA a th v (e )t suparoid Gt o i oty and s ac i)
Note thatS, has a maximum of 1 wher(n) = O for all Figure 7: FastlCA ap-Figure 8: Sparsity based ap-
n # Ny whereng is arbitrary, i.e.x(n) is most sparse, and a proach, noise free, (a) hyproach, noise free, (a) hy-
minimum ofﬁ, whereN is the length ofk(n), whenx(n) =  droxyl; (b) superoxide droxyl; (b) superoxide
constantfor all n. Thus,Sy indeed defines the degree of
sparse of a signad(n).

3.2. Principle of sparse separation :WMH\[%WW inMHMWW

If the peaks of two sparse signalg(n) and sp(n), are = = & 5 5 5w 4 5 5w e w s i E E e
. (a) Estimated hydroxyl by FastiCA from noisy mixtures (SNR = 20dB) () Estimated hydroxyl by new method from noisy mixtures (SNR = 20dB)
not all severely overlapped, then it can be shown that tt

sparsity of the mixturex(n) = ¢;1S1(n) + C2Sp(n) will be - ]

less than the maximum of the sparsities of the two sourc

signals. That is to sax < max@Ss,,Ss,). Definefic) v swsssvwww o . . ]
be the Sparsity (ﬁr_]_(n) + CSz(n) and fz(C) be the Sparsity Of (b) Estimated superoxide by FastiCA from nois y mixtures (SNR = 20dB)  (b) Estimated superoxide by new method from noisy mixtures (SNR = 20dB)
$(n) +csi(n), it can also be shown thét(c) and f,(c) both
have local maximum at = 0. This means that the sparsity
of a sparse signal will go down if slightly superimpose
by another sparse signal. This property can be utilized
separate the sparse sources from their mixtures. Based o
Equation 1, the de-mixing process can be described by

0 1000

Figure 9: FastlICA ap-Figure 10: Sparsity based
roach, SNR20dB, (a) hy- approach, SNR20dB, (a)
%roxyl; (b) superoxide hydroxyl; (b) superoxide

Yhe results for the noise-free case are shown in Figures 7
and 8, where the dotted lines represent the estimated EPR
spectra and the solid lines represent the errors comparing
to the true sources. From Figure 8 we can see that our

wherec is determined by finding the minima of the objec-SParsity based approach can almost perfectly get the two

Se(n) = x2(n) — cxa(n), )

tive function pure EPR spectra. While on the other hand, the spectra
J(©) = 1/Ss., 4) estimated by the FastICA approach are severely distorted

and the estimation error is very notable, as shown in Figure

whereSs, is the sparsity of(n). 7. The lower trace of Figure 7 shows that the distortion of

Applied to the mixtures of free radical EPR spectra ageveral peaks in the superoxide spectrum estimated by Fas-
shown in Figures 1 and 2(c) has the form shown in Fig- t|CA are very severely distorted, and this makes FastICA
ure 6. It can be seen thafc) has three local minima rather not very suitable for EPR spectra decomposition since it is

than two. From the principle above we can conclude thajnfortunately these peaks who contain useful information
the minimum with the lowest value is corresponding to thef the EPR spectra.

most sparse source signal,whilethatwith the highestvalUEFigureS 9 and 10 are the results for the case of

corresponding to the other. SNR=20dB. In these two figures we only give the esti-
mated EPR spectra for a better view, while one can com-
4. Results and Discussions pare them to the true spectra shown in Figure 8 to obtain

a sense of their distortion and estimation error. As shown

Using the pure EPR spectra of the two free radicals hyn Figure 10, the peaks of the EPR spectra estimated by
droxyl and superoxide, as shown in Figure 1, we simulateur new method are all perfectly reserved though the back-
the spectra mixingféect numerically, for two cases whereground of the spectra are noisy than the true ones. How-
one is noise free and the other has a SNR of 20dB. We appyer, the background does not contain any useful informa-
our sparsity based approach to the simulated EPR mixirign. Therefore our new method can work almost equally

635



well in the case of SNR20dB to the noise free case. and
even more severe in the noisy case. While the EPR spec-
tra estimated by FastICA are even more severely distorted
than in the noise free case, as shown in Figure 9. [4]

If we have more than two mixtures available, which are
all composed by the same two source spectra, a PCA pre-
processing can reduce the number of mixtures to two, with
improved signal to noise ratio and without loss of useful
information.

It seems to be very surprising that the optimization of a 5]
very simple sparsity function, shown as Equation 2, is able
to separate sources not independent, since the numerator
of Equation 2 is only an estimation of second order statis-
tics, while it is well known that it is impossible to separate
linear mixtures using only second order statistics (without[6]
exploiting the temporal information) even for independent
sources. However, one should note that the denominator of
Equation 2 is a highly nonlinear function and it contains up
to infinity higher order statistics.

5. Conclusions 7]

There is a need to get pure EPR spectra from their
mixtures, and this task can be done through blind source
separation. However, the ICA based approach does not
work well since the assumption of statistically indepen-[8
dence cannot be satisfied. By exploiting the sparsity of the
EPR spectra, we proposed a new sparse component analy-
sis method that can perfectly separate the pure spectra from
the mixtures in the noise free case and still works well when[9]
the signal is noisy. The new sparse component analysis
method may also apply to any other situations where the
sources have a reasonable degree of sparsity. It can also
play a helpful role in the research of general independent
component analysis or blind source separation using spal
representation, as studied in [13, 14].
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