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Abstract—Organic free radicals play important roles in
many physiological and pathological pathways in biologi-
cal systems. These radicals can be detected and quantified
by their EPR spectra. The measured EPR spectra are often
mixtures of pure spectra of several different free radicals
and other chemicals. Blind source separation can be ap-
plied to estimate the pure spectra of interested free radicals.
Because the pure EPR spectra are often not independent of
each other, the ICA based approach cannot accurately get
the wanted spectra. In this paper we present a sparse com-
ponent analysis method, which exploiting the sparsity of
the EPR spectra, to reliably extract the pure source spec-
tra from their mixtures with high accuracy. The proposed
method can also be used in other similar applications, or
be utilized in the sparse decomposition approach to blind
source separation.

1. Introduction

Independent component analysis (ICA) and blind source
separation (BSS) have many applications in various areas
including communication, acoustics, radar, and biomedical
engineering. Recently they have found their applications
in spectral analysis of Electron Paramagnetic Resonance
(EPR) spectroscopy [1]. EPR spectroscopy is similar to
the more widely known MR spectroscopy, while the former
using paramagnetic resonance.

EPR spectroscopy is a standard way to detect and quan-
titatively measure organic free radicals generated in bio-
logical systems. Because of the lack of sensitivity of a
specific free radical in the current EPR technique, the sig-
nals (called EPR spectra) measured may be a superimposi-
tion of the spectra of all existing free radicals and, maybe,
other chemicals. The superimposed spectra can be called
as multi-component mixtures, while each individual spec-
trum that constitutes the mixtures is called a component
spectrum. Such superposition leads a difficulty in quan-
titative analysis of the EPR spectra, especially when the
component spectra are overlapping.

There has been much interest in numerically decompos-
ing multi-component mixtures of EPR spectra into pure
component spectra. Traditional approach to determine the
component spectra is by matching the mixtures manually
to the spectra of all known and possible pure components
[2]. This approach is not very effective and highly depen-

dent on the contents of the component spectra. Svistunenko
et al [3] proposed a simplified method that utilizes a set
of mixtures of varying compositions, but the method still
requires a priori information concerning the shapes of the
component spectra. Since the component spectra may be
very difficult to be acquired as a priori, generic species free
methods not relying on a priori knowledge of the shapes
of the pure component spectra will be of great advantage.
Generally, as in [3], such methods also depend on multi-
ple mixtures with distinct compositions. A representative
approach was proposed in [4] where a self modeling pro-
cedure and a procedure utilizing the symmetric property of
the spectra were applied with a preprocessing by principle
component analysis (PCA). PCA has been widely used in
analytical spectroscopy, and it can decompose the mixtures
into pure components when the peaks in each component
are well separated from those of every others [5]. If peaks
of different component spectra are overlapped, they must
be linear combinations of the principle components of the
PCA analysis, and some post-processing, as used in [4], is
required to get the pure spectra. Another post-processing
approach used in [5] assumes that each component spec-
trum has only one peak.

Realizing that the problem that the above species-free
methods aims to solve is exactly the blind source separation
problem familiar to the signal processing community, the
authors of this paper, for the first time, proposed an ICA-
based BSS approach in [1] with promising results. Assum-
ing the sources, i.e. the component spectra in this study, are
statistically non-Gaussian and independent, the BSS prob-
lem can be solved by ICA, which is inherently based on
higher order statistics. Representative ICA methods are
JADE [6], InfoMax [7], and FastICA [8]. Alternatively,
second order statistics based methods can also be applied
to solve the BSS problem if the sources are statistically un-
correlated over a set of time lags [9, 10]. However, since in
fact the component EPR spectra are neither completely in-
dependent nor completely uncorrelated, the decomposition
result of the BSS approach to mixed EPR spectra analysis
is not perfect, as shown in our previous studies in [1].

In this study we propose a novel method to perfectly de-
compose multi-component EPR spectra mixtures into pure
component spectra that employs the sparsity of the compo-
nent spectra.
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2. The Problem

In biological systems, organic free radicals play impor-
tant roles in many physiological and pathological path-
ways. Such free radicals can be routinely measured by
the technique of Electron Paramagnetic Resonance (EPR)
spectroscopy. Organic free radicals are too highly reac-
tive to be detected without using spin trap agents to ex-
tend their half-life [11]. However, spin trap agents are
not that ideally species specific. For example, the widely
used agents 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-
N-oxide (DEPMPO) for superoxide (O−•2 ) radical will also
simultaneously trap hydroxyl radical (OH•) in in vivo sys-
tems [12]. Consequently, the measured EPR spectrum us-
ing the spin trap agent DEPMPO will be a linear superpo-
sition of the spectra of DEPMPO adducts of the above two
free radicals if both radicals present, which is common in
biological systems. Figure 1 shows typical EPR spectra of
DEPMPO adduct of hydroxyl and that of superoxide, while
Figure 2 shows two actually measured EPR spectra of mix-
tures of hydroxyl and superoxide.

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

(a) Hydroxyl 

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

(b) Superoxide

Figure 1: EPR spectra of
free radical adducts (a) hy-
droxyl; (b) superoxide
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Figure 2: Mixtures of EPR
spectra shown in Fig. 1

Since the hydroxyl spectrum and the superoxide spec-
trum are overlapping, without the help of signal separation,
one cannot tell out from the measured multi-component
mixtures the exact quantity of each of the two free rad-
icals. Traditional spectroscopy analysis method such as
self-modeling does not work well in our case. In fact, the
multi-component mixture spectra are linear superpositions
of pure component spectra, and thus the problem falls into
a standard blind source separation framework. Exploiting
the model of blind source separation, in our previous study
we proposed a FastICA approach to solve the problem and
got improved results [1]. In that study we assume that two
pure EPR spectra are statistically non-Gaussian and inde-
pendent of each other. However, our assumption of inde-
pendence is not well satisfied. This can be clearly shown
by a close examination of the two spectrum shown in Fig-
ure 1. In fact, the violation of this assumption makes that
the ICA method cannot perfectly separate the two overlap-
ping pure spectra, as shown in Figure 7 and discussed in
Section 4. In order to improve the performance of spectra
separation, in the next section we propose an approach of

sparse component analysis.

3. Sparse Component Analysis

A signal is called sparse if it has some peaks and rela-
tively flat area in between the peaks, as shown in Figure 3
(a,b). Denote the two sparse signals ass1(n) ands2(n), and
we have the following two linear mixtures

x1(n) = s1(n) + c2s2(n)

x2(n) = c1s1(n) + s2(n), (1)

which are shown in Figure 3 (c,d). We can see that there are
two distinct lines in the scatter plot ofx1(n) andx2(n), with
their slopes as1

c1
andc2. It suggests that we can separate

the two sparse sources from the two mixtures by determin-
ing the slopes of the lines in the scatter-plot. The slopes
can be determined by either a C-means clustering based
approach [13] or a potential function based approach [14].
Both approaches work well when the sources are sparse
enough.
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Figure 3: (a,b) Two sparse
signals; (c,d) Two mixtures
of the above two signals
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Figure 4: Scatter plot of
the two mixtures of sparse
sources
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(a) Scatter plot of the two mixtures of EPR spectra
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(b) Sparse separation by the potential function based approach

Figure 5: Scatter plot of the
two mixtures shown in Fig.2
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Figure 6: (a)J(c) for Fig.2;
(b) Zoomed plot of (a)

However, if the sources are not too sparse, as the case
of EPR spectra of free radicals, it is hard to find the dis-
tinct lines and determine their scopes from the scatter plot
of the mixtures, as shown in Figure 5 (a). In fact, the po-
tential function based approach in [14], where the potential
function of this case is shown in Figure 5 (b), cannot reli-
ably separate the two source EPR spectra. So we need to
develop more reliable methods to separate sparse sources
from their linear mixtures.
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3.1. Sparsity function

There may be many ways to quantify the degree of sparse
of a signal. A sparse signal has its energy concentrated in
some narrow segments of the signal. Notice that the func-
tion a2 + b2, subject to|a| + |b| = 1, has its maximum of
1 when eithera or b is zero and its minimum of12 when
a = b = 1

2, so we can define the sparsity of a signal as its
total energy normalized to the sum of the absolute values of
the signal. Mathematically the sparsity function of signal
x(n) can be defined as

Sx =

∑
n x2(n)

(
∑

n |x(n)|)2
. (2)

Note thatSx has a maximum of 1 whenx(n) = 0 for all
n , n0 wheren0 is arbitrary, i.e.,x(n) is most sparse, and a
minimum of 1

N , whereN is the length ofx(n), whenx(n) =
constantfor all n. Thus,Sx indeed defines the degree of
sparse of a signalx(n).

3.2. Principle of sparse separation

If the peaks of two sparse signals,s1(n) and s2(n), are
not all severely overlapped, then it can be shown that the
sparsity of the mixturex(n) = c1s1(n) + c2s2(n) will be
less than the maximum of the sparsities of the two source
signals. That is to saySx ≤ max(Ss1,Ss2). Define f1(c)
be the sparsity ofs1(n)+ cs2(n) and f2(c) be the sparsity of
s2(n)+cs1(n), it can also be shown thatf1(c) and f2(c) both
have local maximum atc = 0. This means that the sparsity
of a sparse signal will go down if slightly superimposed
by another sparse signal. This property can be utilized to
separate the sparse sources from their mixtures. Based on
Equation 1, the de-mixing process can be described by

sc(n) = x2(n) − cx1(n), (3)

wherec is determined by finding the minima of the objec-
tive function

J(c) = 1/Ssc, (4)

whereSsc is the sparsity ofsc(n).
Applied to the mixtures of free radical EPR spectra as

shown in Figures 1 and 2,J(c) has the form shown in Fig-
ure 6. It can be seen thatJ(c) has three local minima rather
than two. From the principle above we can conclude that
the minimum with the lowest value is corresponding to the
most sparse source signal, while that with the highest value
corresponding to the other.

4. Results and Discussions

Using the pure EPR spectra of the two free radicals hy-
droxyl and superoxide, as shown in Figure 1, we simulate
the spectra mixing effect numerically, for two cases where
one is noise free and the other has a SNR of 20dB. We apply
our sparsity based approach to the simulated EPR mixing

spectra. The results are shown in Figures 8 and 10. For the
purpose of comparison, we also apply the FastICA method
to the same simulated spectra, and the results are shown in
Figures 7 and 9.
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(a) Estimated hydroxyl (dotted line) by FastICA and the error (solid line)
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(b) Estimated superoxide (dotted line) by FastICA and the error (solid line)

Figure 7: FastICA ap-
proach, noise free, (a) hy-
droxyl; (b) superoxide
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(a) Estimated hydroxyl (dotted line) by new method and the error (solid line)
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(b) Estimated superoxide (dotted line) by new method and the error (solid line)

Figure 8: Sparsity based ap-
proach, noise free, (a) hy-
droxyl; (b) superoxide
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(a) Estimated hydroxyl by FastICA from noisy mixtures (SNR = 20dB)
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(b) Estimated superoxide by FastICA from noisy mixtures (SNR = 20dB)

Figure 9: FastICA ap-
proach, SNR=20dB, (a) hy-
droxyl; (b) superoxide
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(a) Estimated hydroxyl by new method from noisy mixtures (SNR = 20dB)
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(b) Estimated superoxide by new method from noisy mixtures (SNR = 20dB)

Figure 10: Sparsity based
approach, SNR=20dB, (a)
hydroxyl; (b) superoxide

The results for the noise-free case are shown in Figures 7
and 8, where the dotted lines represent the estimated EPR
spectra and the solid lines represent the errors comparing
to the true sources. From Figure 8 we can see that our
sparsity based approach can almost perfectly get the two
pure EPR spectra. While on the other hand, the spectra
estimated by the FastICA approach are severely distorted
and the estimation error is very notable, as shown in Figure
7. The lower trace of Figure 7 shows that the distortion of
several peaks in the superoxide spectrum estimated by Fas-
tICA are very severely distorted, and this makes FastICA
not very suitable for EPR spectra decomposition since it is
unfortunately these peaks who contain useful information
of the EPR spectra.

Figures 9 and 10 are the results for the case of
SNR=20dB. In these two figures we only give the esti-
mated EPR spectra for a better view, while one can com-
pare them to the true spectra shown in Figure 8 to obtain
a sense of their distortion and estimation error. As shown
in Figure 10, the peaks of the EPR spectra estimated by
our new method are all perfectly reserved though the back-
ground of the spectra are noisy than the true ones. How-
ever, the background does not contain any useful informa-
tion. Therefore our new method can work almost equally
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well in the case of SNR=20dB to the noise free case. and
even more severe in the noisy case. While the EPR spec-
tra estimated by FastICA are even more severely distorted
than in the noise free case, as shown in Figure 9.

If we have more than two mixtures available, which are
all composed by the same two source spectra, a PCA pre-
processing can reduce the number of mixtures to two, with
improved signal to noise ratio and without loss of useful
information.

It seems to be very surprising that the optimization of a
very simple sparsity function, shown as Equation 2, is able
to separate sources not independent, since the numerator
of Equation 2 is only an estimation of second order statis-
tics, while it is well known that it is impossible to separate
linear mixtures using only second order statistics (without
exploiting the temporal information) even for independent
sources. However, one should note that the denominator of
Equation 2 is a highly nonlinear function and it contains up
to infinity higher order statistics.

5. Conclusions

There is a need to get pure EPR spectra from their
mixtures, and this task can be done through blind source
separation. However, the ICA based approach does not
work well since the assumption of statistically indepen-
dence cannot be satisfied. By exploiting the sparsity of the
EPR spectra, we proposed a new sparse component analy-
sis method that can perfectly separate the pure spectra from
the mixtures in the noise free case and still works well when
the signal is noisy. The new sparse component analysis
method may also apply to any other situations where the
sources have a reasonable degree of sparsity. It can also
play a helpful role in the research of general independent
component analysis or blind source separation using sparse
representation, as studied in [13, 14].
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