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Abstract—A Markov chain Monte-Carlo sampler in some limited area iV, the samples actually does not re-
which components are more frequently updated than fitect the target variabl¥, in other words such samples are
Gibbs sampler is proposed. Proposed sampler and Gibibst the samples drawn from the target distributiorOne
sampler are compared by using a probabilistic reasonirgimple policy to keep diversification of samples is “Do not
problem. The sample mean drawn from the proposed samsuccessively draw the same sample”.
pler shows faster convergence to the true value than it of In this paper, we firstly review the Metropolis-Hastings

Gibbs sampler. algorithm[5], single-component-update MCMC and their
special case of the Gibbs sampler[2, 5]. Then we propose
1. Introduction new MCMC sampler which update components more ag-

gressively than Gibbs sampler and show the comparison

The most straightforward way to draw samples from &etween the proposed sampler and Gibbs sampler using a
given target distribution is using the joint probability tableprobabilistic reasoning problem.
of the target distribution. However the size of this table
is proportional to the exponential of the dimension of theé
random variable, therefore this straightforward way is im-
practical for Ia_rge-dimensional random v_ariables. 2.1. Metropolis-Hastings Algorithm

Markov chain Monte Carlo(MCMC)[5] is a class of ran-
dom number generators which uses Markov chains whoseMetropolis-Hastings algorithm[5] is the following algo-
distribution converges to the target distribution. Soméithm.
MCMC eftectively work in cases that components of mul-
tidimensional variableX have sparse Markov network[4]. stepO Prepare an arbitrary sequence of conditional distri-

. Review of MCMC around Gibbs Sampler

Let X be a target variablé, V be the range of valuX bution {qO(X'|X)}(t = 1,2,...), which is called pro-
takes,Dy be the set of distributions ovi, = be X’s distri- posal distribution, wher¥’ is a candidate variable for
bution,{X®}(t = 0,1, ...) be a Markov chain, ang® be the next time. Set an arbitrary value %o Sett = 0.

distribution of X®. .
Any distributionp € Dy can be represented as a vectoPte€P1 Generate arandom numbeérccording ta® (X' ¥
whosex-th element isp(x). Let WO be the transitior?
from Xt to XO(pt-1 to p®). WO can be represented
as a matrix whosex(y) element is PO = y X1 = x),

step2 Setx = X’ with probability

(L) ’
Then a(t)(x’ X,) =min (1’ ﬂ(())(())(:l(t)(())((l||))(())) B (3)
_ T
p® = pt-Dyy® 1) a
therefore which is called acceptance probability, otherwise keep
p® = pOWM_ W @) xasitis.

holds. step3 Sett =t + 1 and go to stepl.

The mission of MCMC is generating® whose distri-
bution p® converges to the target distributianIn design- This algorithm simulates the Markov chain whose tran-
ing MCMC, the sequenc8NO}(t = 1,2,...) is designed. sition matrix is
Under some conditions, we can design spai} without
knowing the complete table of the target distribution o _ a0 (xy) X#Y @

One important point is that some limited finite length of Y- Sy gy (xy) x=y'

samples which are drawn by MCMC sampler should have
diversification. If the MCMC sampler draws samples froniThis transition matrix sfices the following so-called de-
1For the sake of simplicity, all random variables in this paper take finitéalled balance equatlon[5] for atl y:t.

discrete values.
2Any transition is a linear operat@y — Dy. T xW>(<2 = 7TyW3(/2 ©)
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Summing up eq.(5) aboxt we get One way to mak&V® which suffice the constraint above
t is adopting Metropolis-Hastings algorithm. It is called
WO =7 (6)  single-component Metropolis-Hastings[5]. In the case that
) N ] X = (Xo, ...XN-1) IS a loosely coupled Markov network[4],
i.e. the transition byW® does not mover. It is known X; depends on only a few components amofg there-
that if the Markov chain is weakly ergodic[1, 3] then thefg e we can easily get(x|x_;) or x(x|x_) from local in-

distribution F_’() converges tar whent — co. ~ formation. This is the major merit of the single-component
In designing a Metropolis-Hastings algorithm, it is im-petropolis-Hastings.
portant thatx’ is accepted frequently. I¥ is rarely ac-  There are several ways to select the component updated

cepted, the Markov chain stays at the sanier long time 5t timet[5]. Let i(t) be the s#ix of the component updated
thereforex® travels only limited area iV in finite time. attimet. In this paper, we adopt sequential-update:

2.2. Single-component-update MCMC i) =t modN. (13)

Single-component-update MCMC is used in casesxhat2.3. Gibbs Sampler
is multi-dimensional i.eX = (Xo, ..., Xy-1). Itisa MCMC

in each transition only one component is updated. AssumeG'bbS sampler[2,_ 5] is a special case O.f Smg_le—
thati-th componeni; is updated ang-2 change top®. F:omponent Metropolis-Hastings. Its proposal distribution

X_i denotes the joint variable of all componentséxcept IS
for i-th componenk; 3. v o o , »
Single-component-update MCMC'’s transition matrix 706, X113 Xi) = 604, X-i)m(X1X-) (14)
has the following form therefore Gibbs sampler’s local transition matrix is
W o = 90 YO0 ) e
04 x)O,y-1) I : G, =| : (15)
whered is some conditional distribution is Kronecker Tx.,
delta: 1 x= whose rows are the same. Itis clear that this local transition
8(xy) = { -y (8) sufices eq.(12) because it moves any distributionto.
0 x=#y The acceptance probability is
X_j does not change therefore the marginal distribution ® , (1 (X, X)m(Xi1X-)
of X_; does not change: @ (%, x-i), (X, X)) = mm( m)

pO0x) = pI(x). (9) =t (16)
. o . The information about the target distribution re-
)B(itgﬁafrzzr;"}'on’ only the distribution 6§ conditioned by quired to perform the Gibbs sampler is the full conditional
distribution[5]z(xi|x_;) in eq.(14). D@
. 1 " One interesting property of Gibbs sampler is t
POwily-) = Z PR 0aly-)d . -0): (10) does not refeb(i(t‘l). Actually this property specifies what
) Gibbs sampler is. Given, the transition has the following

Let pl()t()_i be the vector whosg-th component i$® (x|x_;) properties is unique and it is Gibbs sampler.

and V\/& be the matrix, which we namiecal transition e The transition updates only one component.
matrix, whose &;,y;) component isd®(y;|x, x_;) then we « X does not refex?.
can rewrite eq.(10) in a vector form. . )

e The transition does not movgi.e.7W =n

t t—1)y 4 (t .
p‘()li = p|(>Li )W|(>L) (11) Because the second constraint means that the local tran-

sition matrix has the same row vectars From the third

To p® converges tor, WY should not mover i.e. constraint it has to sfice eq.(12).
aW®O = 7. In single-component-update MCMC, itis equiv-
alent to v

7T|X7.V\/|()2i = TMx - (12) TTx_; =V =T (17)

SWe use the same notation about the valMemke. Readers are ex- v,
pected to interpret symbols for distributions withor x_j as appropriate : i v ; ; )
conditional or marginal distributions. For example This chal transn.lon matrix is |dept|cal to G|bb§ sampler’s. .
Besides mentioned above, Gibbs sampler is also speci-
r04lx-i) = PrXi = XiIX = x-4). fied as a greedy algorithm which minimize the Kullback-
Leibler divergenc& L(p®||x) in each transition[7].
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3. More Aggressive Updating than Gibbs ampler Xo

Eq.(16) shows that the candidaté is always ac-
cepted in step2 in section 2.1 therefore the Gibbs sampler | | |
most aggressively updates the components among single- Xa = X - X
component-update Metropolis-Hastings. However if we do | | |
not limit ourselves in the frame of Metropolis-Hastings al-
gorithm, we can design a MCMC which more aggressively
updates the components than Gibbs sampler.

In Metropolis-Hastings algorithm, transition does not
change the value of any component in the following two

cases: X is rejected” or ¥’ = X"

The first case does not happen in Gibbs sampler how- g entially and periodically make the local transi-
ever the second case might happen. In cases that the range tion with Xo,..., Xo and get the sequence of samples
of values each component takes is small, especially in the

Figure 1: Markov network used in the experiment

binary cases, the second case frequently happens.

X0 x@_ .

In eq.(12), the diagonal elements in the local transition e Assume the random numbers above are drawn from

matrix |)2i = mx, are the probability-th component does
not change therefore if we reduce diagonal elements with
keeping eq.(12) we get the local transition matrix with less

staying atx;.

One way to reduce diagonal elements of the local transi-

tion matrix W, which does not move, is

W=@A+A)OW-211 (1=0) (18)
It is easy to showpW = p because bothV and identical

matrix | does not movep. The diagonal elements &

the posterior distributiorP(Xj|X;9 = 0). Then any
expectation ofEpx;x,.=0)(f (X)) is estimated by the
sample mean

&mmﬂﬁam~ézﬁw%

t=1

In the case to getP(X; = 1X, = 0) =
Epxix0=0)[ f(Xi)], f is just the identical function.

(21)

We took 10 traces of sample mean with 1€elient ran-

are (1+ A)W; — A. If we take larger we can reduce the dom number seeds. All components were initialized to 0

diagonal elements ol however any element & has to
be non-negative therefore

A< ad
T 1l-w

(19)

wherew is the minimum diagonal element @.
Substituting Gibbs sampler’s transition matrix\té in
eq.(18), we get For each;, we get

Wi (20)

Gl/xfi = (14 A)Gpx; — Ak 1 1— Wy,

AX,i =

for eachx_;, wherely , is the smallest element afy ,. This
is the local transition matrix we propose here.

4. Experiment

We show some comparison between Gibbs sampler aflf

at the beginning of each trace. Figure 2 shows the these
traces. The bold lines shows the true valuePgK, =
1|X10 = 0). As is shown, the proposed sampler shows
faster convergence to the true value than Gibbs sampler.
And we see the proposed sampler fligamore frequently
than Gibbs sampler. Gibbs sampler tends to kegpn-
changed.

Figure 3 shows the case that true valu®Ef; = 1|X;o =
0) is close to 0. No improvement is seen in this case. This
phenomenon comes from that the Gibbs sampler’s local
transition has a small diagonal element. We discuss this
degradation in the next section.

5. Discussion

In Monte-Carlo integration, successive samples gener-
d by the sampler are used for taking sample mean there-

the proposed algorithm here. We applied those two a|96c_>r diversification of samples seen in the limited length of

rithms to a probabilistic reasoning problem[4].

successive samples is important. In some cases, diversi-

Figure 1 shows the Markov network[4] used in the probfication of samples is more important than independency

abilistic reasoning, where eaef is binary. Each clique’s
local potential[2] was determined by assigning rando

numbers.
The reasoning task here is getting so¥ye distribution

under the conditioX;p = 0. This task is performed as

follows.

e Fix the value ofX;gto 0.

among them[8]. In this paper, eq.(18) is used to reduce

fhe diagonal elements of the local transition matrix. How-

ever this diagonal element reduction does not work in cases
there is just one small diagonal element. Akaho[8] shows
another diagonal element reduction method to improve this
defect.

In the cases that Gibbs sampler’s local transition matrix
in eq.(15) has a small diagonal elemewt,, A_; is small
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