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Abstract—A Markov chain Monte-Carlo sampler in
which components are more frequently updated than in
Gibbs sampler is proposed. Proposed sampler and Gibbs
sampler are compared by using a probabilistic reasoning
problem. The sample mean drawn from the proposed sam-
pler shows faster convergence to the true value than it of
Gibbs sampler.

1. Introduction

The most straightforward way to draw samples from a
given target distribution is using the joint probability table
of the target distribution. However the size of this table
is proportional to the exponential of the dimension of the
random variable, therefore this straightforward way is im-
practical for large-dimensional random variables.

Markov chain Monte Carlo(MCMC)[5] is a class of ran-
dom number generators which uses Markov chains whose
distribution converges to the target distribution. Some
MCMC effectively work in cases that components of mul-
tidimensional variableX have sparse Markov network[4].

Let X be a target variable1, V be the range of valueX
takes,DV be the set of distributions onV, π be X’s distri-
bution,{X(t)}(t = 0,1, ...) be a Markov chain, andp(t) be the
distribution ofX(t).

Any distribution p ∈ DV can be represented as a vector
whosex-th element isp(x). Let W(t) be the transition2

from X(t−1) to X(t)(p(t−1) to p(t)). W(t) can be represented
as a matrix whose (x, y) element is Pr(X(t) = y|X(t−1) = x).
Then

p(t) = p(t−1)W(t) (1)

therefore
p(t) = p(0)W(1)...W(t) (2)

holds.
The mission of MCMC is generatingX(t) whose distri-

bution p(t) converges to the target distributionπ. In design-
ing MCMC, the sequence{W(t)}(t = 1,2, ...) is designed.
Under some conditions, we can design such{W(t)} without
knowing the complete table of the target distributionπ.

One important point is that some limited finite length of
samples which are drawn by MCMC sampler should have
diversification. If the MCMC sampler draws samples from

1For the sake of simplicity, all random variables in this paper take finite
discrete values.

2Any transition is a linear operatorDV → DV.

some limited area inV, the samples actually does not re-
flect the target variableX, in other words such samples are
not the samples drawn from the target distributionπ. One
simple policy to keep diversification of samples is “Do not
successively draw the same sample”.

In this paper, we firstly review the Metropolis-Hastings
algorithm[5], single-component-update MCMC and their
special case of the Gibbs sampler[2, 5]. Then we propose
new MCMC sampler which update components more ag-
gressively than Gibbs sampler and show the comparison
between the proposed sampler and Gibbs sampler using a
probabilistic reasoning problem.

2. Review of MCMC around Gibbs Sampler

2.1. Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm[5] is the following algo-
rithm.

step0 Prepare an arbitrary sequence of conditional distri-
bution {q(t)(X′|X)}(t = 1,2, ...), which is called pro-
posal distribution, whereX′ is a candidate variable for
next time. Set an arbitrary value tox. Sett = 0.

step1 Generate a random numberx′ according toq(t)(x′|x).

step2 Setx = x′ with probability

α(t)(x, x′) = min

(
1,
π(x′)q(t)(x|x′)
π(x)q(t)(x′|x)

)
, (3)

which is called acceptance probability, otherwise keep
x as it is.

step3 Sett = t + 1 and go to step1.

This algorithm simulates the Markov chain whose tran-
sition matrix is

W(t)
xy =


q(t)(y|x)α(t)(x, y) x , y

1−∑
x,y q(t)(y|x)α(t)(x, y) x = y

. (4)

This transition matrix suffices the following so-called de-
tailed balance equation[5] for allx, y, t.

πxW
(t)
xy = πyW

(t)
yx (5)
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Summing up eq.(5) aboutx, we get

πW(t) = π (6)

i.e. the transition byW(t) does not moveπ. It is known
that if the Markov chain is weakly ergodic[1, 3] then the
distributionp(t) converges toπ whent → ∞.

In designing a Metropolis-Hastings algorithm, it is im-
portant thatx′ is accepted frequently. Ifx′ is rarely ac-
cepted, the Markov chain stays at the samex for long time
thereforeX(t) travels only limited area inV in finite time.

2.2. Single-component-update MCMC

Single-component-update MCMC is used in cases thatX
is multi-dimensional i.e.X = (X0, ...,XN−1). It is a MCMC
in each transition only one component is updated. Assume
that i-th componentXi is updated andp(t−1) change top(t).
X−i denotes the joint variable of all components ofX except
for i-th componentXi

3.
Single-component-update MCMC’s transition matrix

has the following form

W(t)
(xi ,x−i )(t)(yi ,y−i )

= δ(x−i , y−i)d
(t)(yi |x) (7)

whered is some conditional distribution,δ is Kronecker
delta:

δ(x, y) =


1 x = y

0 x , y
. (8)

X−i does not change therefore the marginal distribution
of X−i does not change:

p(t)(x−i) = p(t−1)(x−i). (9)

By the transition, only the distribution ofXi conditioned by
X−i changes:

p(t)(yi |y−i) =
∑

xi

p(t−1)(xi |y−i)d
(t)(yi |xi , y−i). (10)

Let p(t)
|x−i

be the vector whosexi-th component isp(t)(xi |x−i)

and W(t)
|x−i

be the matrix, which we namelocal transition

matrix, whose (xi , yi) component isd(t)(yi |xi , x−i) then we
can rewrite eq.(10) in a vector form.

p(t)
|x−i

= p(t−1)
|x−i

W(t)
|x−i

(11)

To p(t) converges toπ, W(t) should not moveπ i.e.
πW(t) = π. In single-component-update MCMC, it is equiv-
alent to

π|x−i W
(t)
|x−i

= π|x−i . (12)
3We use the same notation about the valuesX take. Readers are ex-

pected to interpret symbols for distributions withxi or x−i as appropriate
conditional or marginal distributions. For example

π(xi |x−i ) = Pr(Xi = xi |X−i = x−i ).

One way to makeW(t) which suffice the constraint above
is adopting Metropolis-Hastings algorithm. It is called
single-component Metropolis-Hastings[5]. In the case that
X = (X0, ...XN−1) is a loosely coupled Markov network[4],
Xi depends on only a few components amongX−i there-
fore we can easily getπ(x′i |x−i) or π(xi |x−i) from local in-
formation. This is the major merit of the single-component
Metropolis-Hastings.

There are several ways to select the component updated
at timet[5]. Let i(t) be the suffix of the component updated
at timet. In this paper, we adopt sequential-update:

i(t) = t mod N. (13)

2.3. Gibbs Sampler

Gibbs sampler[2, 5] is a special case of Single-
component Metropolis-Hastings. Its proposal distribution
is

q(t)(x′i , x
′
−i |xi , x−i) = δ(x′−i , x−i)π(x′i |x−i) (14)

therefore Gibbs sampler’s local transition matrix is

G|x−i =



π|x−i

...
π|x−i

 (15)

whose rows are the same. It is clear that this local transition
suffices eq.(12) because it moves any distribution toπ|x−i .

The acceptance probability is

α(t)((xi , x−i), (x
′
i , x−i)) = min

(
1,
π(x′i , x−i)π(xi |x−i)

π(xi , x−i)π(x′i |x−i)

)

= 1. (16)

The information about the target distributionπ re-
quired to perform the Gibbs sampler is the full conditional
distribution[5]π(xi |x−i) in eq.(14).

One interesting property of Gibbs sampler is thatX(t)
i

does not referX(t−1)
i . Actually this property specifies what

Gibbs sampler is. Givenπ, the transition has the following
properties is unique and it is Gibbs sampler.

• The transition updates only one component.

• X(t)
i does not referX(t−1)

i .

• The transition does not moveπ, i.e. πW = π

Because the second constraint means that the local tran-
sition matrix has the same row vectorsv. From the third
constraint it has to suffice eq.(12).

π|x−i



v
...
v

 = v = π|x−i . (17)

This local transition matrix is identical to Gibbs sampler’s.
Besides mentioned above, Gibbs sampler is also speci-

fied as a greedy algorithm which minimize the Kullback-
Leibler divergenceKL(p(t)||π) in each transition[7].
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3. More Aggressive Updating than Gibbs ampler

Eq.(16) shows that the candidatex′ is always ac-
cepted in step2 in section 2.1 therefore the Gibbs sampler
most aggressively updates the components among single-
component-update Metropolis-Hastings. However if we do
not limit ourselves in the frame of Metropolis-Hastings al-
gorithm, we can design a MCMC which more aggressively
updates the components than Gibbs sampler.

In Metropolis-Hastings algorithm, transition does not
change the value of any component in the following two
cases: “x′ is rejected” or “x′ = x”.

The first case does not happen in Gibbs sampler how-
ever the second case might happen. In cases that the range
of values each component takes is small, especially in the
binary cases, the second case frequently happens.

In eq.(12), the diagonal elements in the local transition
matrixW(t)

|x−i
= π|x−i are the probabilityi-th component does

not change therefore if we reduce diagonal elements with
keeping eq.(12) we get the local transition matrix with less
staying atxi .

One way to reduce diagonal elements of the local transi-
tion matrixW, which does not movep, is

W′ = (1 + λ)W− λI (λ ≥ 0) (18)

It is easy to showpW′ = p because bothW and identical
matrix I does not movep. The diagonal elements ofW′

are (1+ λ)Wii − λ. If we takeλ larger we can reduce the
diagonal elements ofW′ however any element ofW has to
be non-negative therefore

λ ≤ w
1− w

(19)

wherew is the minimum diagonal element ofW.
Substituting Gibbs sampler’s transition matrix toW in

eq.(18), we get For eachx−i , we get

G′|x−i
= (1 + λx−i )G|x−i − λx−i I λx−i =

wx−i

1− wx−i

(20)

for eachx−i , wherelx−i is the smallest element ofπ|x−i . This
is the local transition matrix we propose here.

4. Experiment

We show some comparison between Gibbs sampler and
the proposed algorithm here. We applied those two algo-
rithms to a probabilistic reasoning problem[4].

Figure 1 shows the Markov network[4] used in the prob-
abilistic reasoning, where eachXi is binary. Each clique’s
local potential[2] was determined by assigning random
numbers.

The reasoning task here is getting someXi ’s distribution
under the conditionX10 = 0. This task is performed as
follows.

• Fix the value ofX10 to 0.

X0

|
X1 − X2 − X3

| | |
X4 − X5 − X6

| | |
X7 − X8 − X9

|
X10

Figure 1: Markov network used in the experiment

• Sequentially and periodically make the local transi-
tion with X0, ...,X9 and get the sequence of samples
x(0), x(1), ....

• Assume the random numbers above are drawn from
the posterior distributionP(Xi |X10 = 0). Then any
expectation ofEP(Xi |X10=0)( f (Xi)) is estimated by the
sample mean

EP(Xi |X10=0)[ f (Xi)] ∼ 1
n

n∑

t=1

f (x(t)
i ) (21)

In the case to getP(Xi = 1|X10 = 0) =

EP(Xi |X10=0)[ f (Xi)], f is just the identical function.

We took 10 traces of sample mean with 10 different ran-
dom number seeds. All components were initialized to 0
at the beginning of each trace. Figure 2 shows the these
traces. The bold lines shows the true value ofP(X0 =

1|X10 = 0). As is shown, the proposed sampler shows
faster convergence to the true value than Gibbs sampler.
And we see the proposed sampler flipsx0 more frequently
than Gibbs sampler. Gibbs sampler tends to keepx0 un-
changed.

Figure 3 shows the case that true value ofP(Xi = 1|X10 =

0) is close to 0. No improvement is seen in this case. This
phenomenon comes from that the Gibbs sampler’s local
transition has a small diagonal element. We discuss this
degradation in the next section.

5. Discussion

In Monte-Carlo integration, successive samples gener-
ated by the sampler are used for taking sample mean there-
for diversification of samples seen in the limited length of
successive samples is important. In some cases, diversi-
fication of samples is more important than independency
among them[8]. In this paper, eq.(18) is used to reduce
the diagonal elements of the local transition matrix. How-
ever this diagonal element reduction does not work in cases
there is just one small diagonal element. Akaho[8] shows
another diagonal element reduction method to improve this
defect.

In the cases that Gibbs sampler’s local transition matrix
in eq.(15) has a small diagonal elementwx−i , λ−i is small
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Gibbs sampler
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Figure 2: sample mean ofx0

and the proposed sampler’s local transition matrixG′|x−i
in

eq.(18) is almost same as Gibbs sampler’s local transition
matrixG|x−i . In such cases we can not expect the improve-
ment. In the caseXi is binary, this degradation happensXi

has small entropy, in other wordsXi takes almost always
the same value. Therefore in probabilistic reasoning ap-
plications, if you have less interest in such less informative
componentsXi , this degradation does not become problem-
atic.
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