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Abstract—We propose an algorithm for solving global points for grouping sample points around each local opti-
optimization problems with objective functions ofreal mum, and iii) forming groups of mutually close points us-
variables and bounded constraints. This method basicallyg a clustering technique and applying the local optimizer
uses sample lattice points and uses topographical informfaem the best point of each group. However, if multiple
tion on objective function and a multilevel single linkagelocal optima are included in a group, only one local opti-
technique for avoiding repeated convergence to the samam can be found by this method. ¢tusteringmethods,
local minima. We show that the algorithm can calculatsampled points are basically grouped by using only infor-
neighboring points in a much shorter time than that in thenation on the distance between two points. Overviews of
case of using the TGO method. Moreover, in order to avoithe clustering methods have been described in [4].
exponentially increasing sample size with increased num- As more advanced methods, tHelti-Level Single Link-
ber of divisions of each coordinate, we propose a subspagge (MLSL) algorithm [3] and theTopographical Global
sampling. We show by numerical experiments in simpl@ptimization(TGO) method [5], which use information
test functions that the algorithmifectively finds the glObal not on 0n|y the distance between two neighboring points
minima in a short computational time and in a few functiorpyt also on the function values of these two points, have

evaluations. been proposed. The MLSL method uses a local optimizer
for each new sample poing except if there is already a
1. INTRODUCTION sampled pointx; with f(x;) < f(x;) and|l x;—x; [I< ry,

wherery is the critical distance. However, this method

In recent years, many deterministic and stochastic alggometimes find local optima that have already been found.
rithms have been proposed for solving a global optimizaFhe TGO method detects sample points so thatl-all
tion (minimization) problem (P) of a multivariate function neighboring points around each sample point are higher
with bounded constraints: than the sample point, and a local optimizer is used for each
detected point. This method, however, sometimes finds the
same local optima if is small. Moreover, a long time is
needed to calculate neighboring points of the current point
in both methods.

Deterministic algorithms [2] repeatedly divide a given To overcome the problem of ificient use of CPU re-
region into subregions, select a subregion in which a glob&purce for finding-neighboring points, we propose a hy-
optimum is included, and give a guarantee of successfullyfid algorithm consisting of the following steps: i) sam-
finding the global optimum under highly restrictive condi-Pling points on a lattice, ii) detecting points by the TGO
tions on objective functions (for example, Lipschitz conti-nethod, iii) selecting a starting point by the MLSL method
nuity with a known Lipschitz constant). and iv) terminating the algorithm and estimating sample

On the other hand, stochastic methods involve randoRPints on the next iteration by Boender’s expectation [1] of
sampling or a combination of random sampling and locdhe number of local minima.
search. The latter algorithms, callesultistart methods, The remainder of the paper is organized as follows. No-
can find the global optimum with a high degree of accuracyations are given in section 2. In section 3, MLSL and TGO

However, these algorithms are very fiieient because algorithms are described as background information. The
of repeated convergence of many sample points to the samain algorithm is described in detail in section 4. Lattice-
local minima that have already been found. based sampling and subspace sampling are described in

To overcome this problentlusteringmethods [4] have section 5. In section 6, results of tests on the proposed al-
been used. These methods consist of the three steps: i) tgkrithm by numerical experiments in Shekel functions are
ing uniformly random sample points, ii) selecting sampleghown. Finally, concluding remarks are presented.

Min f(X) = f(xg, X2,...,Xn),
(P) | SubjecttoL; <x<U;, i=12,...,n,
D" ={xeR"|[Ly,Us] x---x[Ln,Un] }.
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2. PRELIMINARIES The MLSL algorithm finds the set of local minimé
o ~and the set of minimal function valués' for a function
In a problem (P), suppose the objective functid®) is  { over a searching regiod" for a given number of initial
continuous and smooth, and it has a finite number of is@&ampling pointN®, for a given reduced ratip(0 < y < 1)

lated local minimaq, € D"(k=1,2,..., M). , and for a given constant > 0. The steps of the algorithm
A setX* of the isolated local minima and a $€tof their  gre as follows.
values are written by

(F% X*) e« MLSL(D" f, Nb vy, 0);

{X* = (X, X5 ... Xy ), )
Fro= {10 FOG), -, TOG) ) - M1. [Initialize] SetX* —0; F*«—0; ke1; NN,
Notation 1 Given a setA that consists of finite elements, M2. [Sample points and select sample]Sample N®
the size ofA is denoted byA. points and select the number pR® lowest points.
SetN, «—yN®. Transform the sample by selecting
Notation 2 An algorithm is expressed by using the follow- the fractiony of lowest points.
ing notation: . ) )
M3. [Determine ry and starting point of a local search
(ri,ro,...,rg) «anameag,ay,...,ap). by MLSL, and apply the local search] Determine
rx by equation (2) and apply a local search from each
This means that if inputp-arguments &, ay,..., ap) new pointx; (i = 1,2,..., N;) except if there is a sam-
are given by applying the algorithra_name results ple pointx; with f(x;) < f(x;) and|| x; — Xi [| < r«. Add
(r1,r2,...,rq) are obtained. the obtained local minimum* to X*.
M4. [Test for stop] If the stop condition (3) is satis-
3. BACKGROUND OF OUR ALGORITHM fied, then stop. Otherwise set a new sample point
NOHD  121X*2 + 3X*| + 2), setN « N + N&+D set
3.1. MLSL Algorithm ke—k+ 1, and go to step2.
The MLSL algorithm [3] is one of the mostffecient
mutistart-based methods. The method is very simple, and no clustering is applied.

In this algorithm, the local search procedure is applied t¥he only dificulty is to find the nearest neighbor for each
every sample point in thk-th iteration except in the case new point in an #icient way in the growing sample of uni-
in which there is another sample point within the followingformly distributed points.

threshold-distancex In spite of its simplicity, the theoretical properties of the
/n method are quite strong. ¢ > 4, then even if sampling
e = 1 (U_ﬂ(Dn) ~F(1 + fj) WLN) ’ @) continues forever, the total number of local searches is fi-
7 2/ N nite with probability 1 [1].

which has a lower function value. Here,is a constant, 3.2. TGO Algorithm

u(D") is the Lebesgue measure BF, I'(-) is the gamma _ ) )
function, andN is the total number of sample points. The TGO algorithm was proposed byfh [4] and is also

Furthermore, the algorithm repeats sampling until th@ Very éficient mutistart-based method. _ _
expected number of minima<|(yN — 1)/ (yN — [X*| = 2) The TGO algorithm consists of the following steps: i)

exceed the number of érent minima foundX*| by less S@Mpling the number o points, ii) detectingx; such

than 0.5. Thus, the algorithm stops if tfh(at)function values at its neighbbpoints are higher than
Xj s
X (yN-1 f(xj) < f(xi i=12...1 4
| |(7 - ) < |x*| +O5, (3) (XJ) < (XI) (I s & ) )7 ( )
YN =X -2 and iii) applying a local search from points detected.

This algorithm is also very simple, but there is a waste

h 0 1) is the reduced ratio of ling, thatis, .= "> T8 . .
wherey (0<y<1) is the reduced ratio of sampling, tha Isgtlme in finding neighbot-points.

only yN-lowest points are used as candidate starting poin
of a local search based on equation (2).

In the first iteration,N® (= N as the initial value) is 4. MAIN ALGORITHM
given, and in the subsequent iteratidid*V (k = 1,2,...)

andN are updated by In this section, we show the main algorithm of our new

method. This algorithm consists of i) lattice-based sam-

ket) Lo e . pling, ii) detecting points close to each local minimum us-
N <~ (@AX17+3X7 +2), ing TGO, iii) determining the starting point by MLSL cri-
N« N + N&+D), teria, and iv) applying a local search.
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In the MLSL algorithm, onlyyN-lowest points are se- First stage: This stage is used in the first iteratian= 1.
lected afterN sampling. On the other hand, in our algo- Divide each coordinate intdly and generate points
rithm y is set to 1 because of al sample points are se- X = (X1, X2,..., Xy) ON a lattice as follows:
lected at ;tep i) apd points are detected by TGO at step ii). e (Ui—L)/Nag (i =12....n),

The main algorithm finds the set of local minirfa and X —Li+h/2+k-h (k=01 Ny — 1)
the set of minimal function valugs* for a functionf over o ! o AT
a searching regio®", for a given number of initial sam- Then seN® « (Ng)".
plings N, and for a given constawnt > 0. The detailed Therefore, thes-th lattice { = 1,2,...,n) point can

steps of the algorithm are as follows. be denoted by, k.. k,, and its function value can also
be denoted by, ... k- In case such a sampling per-

(F*, X*)—GM(f, D" N®, &); formed, the condition (4) for detecting poixi:
G1. [Initialize] SetX*«0, F*«0, k1, N« NO, f(x)) < f(x) (=12...,1),

and y«< 1. Set the set of these function values

F at sample points, the set of detected poiAts can be transformed into

and the set of these function valuEs as follows:

F 0, X.—0,andF. 0. fridonko < Tt lion ks Tiakon ke < Fla-Lkon . koo

G2. [Sample points] GenerateN® lattice-based Sam- | ..ottt

pling points (See the next section for detailxﬁ) € fikonkn < Tkt s Fiikonkn < Tk ko-1-
D" (i = 1,...,N®), evaluate these function values
k) _ K)\ 7: H . .. . .
18 = £(x¥) (i = 1,...,N®), and add these function In this condition, the number of neighbor points be-
values to the seft. comed = 2n, and we can easily calculate these neigh-
bor 2n-points.

G3. [Detect (select) points by TGO] Detect a pointx;

SFJCh that functiqn vaIues'at its neighlepoints arg Second stage:This stage is used in the second iteration
higher thanf (x;) like equation (4). Then add the point k = 2. Divide each coordinate inthiy and generate

Xj to the seiX; and its function valudj = f(x;) to the POINtSX| = (X1, X, .. .. X) ON a lattice as follows:

setF..
hi<—(Ui - Li)/Nd (I = 1,2,...,n).
G4. [Determinery and starting point of a local search X—Li+k-h{=12..,Ng—-1).
by MLSL, and apply the local search] Determine
rx by equation (2), and apply a local search from each
new pointx; € X; except if there is a sample point

Then set a set of grid poink¥® «— XC+{ x = (X1, X2, . . .
, %) }, whereXC is initialized by an empty set. Let an

. index setl® —{1,2,...,|X%|}. Then sample points
Xj € Xc Wlth f(x;) < _f(.Xi) and|| x;—xi |l < lk. A(.jd %) (i =1 N(Z)) are selected by thepfoIIF())Wing
the obtained local minimum* to X* and its function j[
valuef* to F*. Steps.
if N@ < |X®| then
Gb. [T(_ast for stop and set a new number pf_sample select; randomlyl; € 16 and set® « IG — {I;},
points] If the stop condition (3) is satisfied, then Xi(2)<_xf’ XG  XG _ {xi(z)}(i =1,...,N®).

stop. Otherwise set a new number of sample points
NO+De— (21X*2 + 3X*| + 2), update the total number
of sample pointdN « N+N&1D setX, « 0, F¢« 0,
k—k+ 1, and go to stefs2.

else setx? « XC (i = 1,...,IXC]), XC 0.
if N@ > |X®| then
generate uniformly random poirntse D",
and setx® « x (i = [X®| + 1,...,N®).

From the set of local optimX* and the set of optimal Since the neighbot-points of a pointx; become
valuesF* obtained by the algorithm, we can obtain the ~ neighbor lattice points at the first stage, we can also
global optimumx** and the global optimal valué* with easily find these neighbor points.

the smallest value in the set of local optimal val&€s . _ . . .
P Third stage: This stage is used after the second iteration

k = 3,4,.... In this stage, ifX®| = 0, then sample
5. SAMPLING points x¥ (i = 1,...N®) are generate randomly in
5.1. Lattice-based Sampling D", otherwisg Sample poi.nbék) (i=1...NYare
selected by similar steps in the second stage.
In order to reduce wasted CPU time for findirg
neighbor points, we propose lattice-based sampling. The If an appropriate numbed® is determined, sampling at

sampling consists of the following three stages. stepG2 will be terminated by the second stade 2).
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5.2. Sub S li . . .
ubspace sampling Table 1: Sekel’s test functions r18-of 4 variables withm

In the lattice-based sampling, sample sizg)( expo- local minima in an interval & x; < 10 of each coordinate

nentially increases with respect to dimensien In or- Function TGO MLSL Our method
der to avoid this problem, we proposabspace sampling  Name Nre UT | Nio UT | Nie UT
which samples on a reducegi(< n)-dimensional space. g5 265 10.8| 404 1 174 037
We illustrate an example of dividing the original even- S-7 _ _ 432 1 207 0.53
dimensional spacR" into two half-dimensional subspaces S-10 _ _ 564 2 210 0.67

RY2 andR"Y2. Moreover, in order to easily understand the
method, we treat the Shekelproblem (R) defined on a
4-dimensional space as follows:

Nse : Number of function evaluations.
UT : Unittime (UT = 1 is 1000 function evaluations
of Sb).

1 & : The global minimum was not found in one of four
e | ?21{(.)(1, —a)2+ G trials.

Subjectto  O< Xy, X2, X3, X4 < 10, (i = 1,2,3,4),

D*={x e R*|[0,10]x [0,10]x [0,10]x [0,10]},  These results show that our algorithm c#ieetively find

the global minimum in a fewer function evaluations and a
shorter computational time than can other methods.

Min f(xq, X2, X3, X4) = — X",

wheremis the number of local minima.

We split the original problem (&) defined on a 4-
dimensional space into the following two subproblems
(Ps1) and (Rso) defined on a 2-dimensional subspace: 7. CONCLUDING REMARKS

1 We have proposed an algorithm for solving global opti-
mization problems that consists of the following steps: i)
lattice-based and subspace sampling, ii) detection of points
by the TGO method, iii) determination of the starting point
by the MLSL criterion, and iv) termination of the algorithm
and estimation of the number of sample points on the next

Min f1(x1, %2) = = 22 :
n = LG —ap+c

(Ps) Subjectto 0O< xg, % <10, (i = 1,2),
D? = {x e R?|[0,10] x [0, 10]}.
1

Min fa(xs, X4) = = X0y

) 5
(Ps2) Subi 0 1153{(.()(] ;ii)z} +G iteration by Boender’s expectation [1] of the number of lo-
ubjectto 0< x3, x4 <10, (I = 3,4), cal minima.
D? = {x € R?|[0,10] x [0, 10]}. We have shown that our algorithm can find a global min-

imum in a short time because calculation for finding neigh-
bor points is completed in a much shorter time than that in
the case of using the TGO method.

Let the number of divisions at each coordinateNye=
10 in the case where the sample siz& £010000 in Ry is
vastly reduced to the size 20° = 200 in (Rsp and (Rs2).

In two such subspaces, sampling and detecting points by
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