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Abstract—We propose an algorithm for solving global
optimization problems with objective functions ofn-real
variables and bounded constraints. This method basically
uses sample lattice points and uses topographical informa-
tion on objective function and a multilevel single linkage
technique for avoiding repeated convergence to the same
local minima. We show that the algorithm can calculate
neighboring points in a much shorter time than that in the
case of using the TGO method. Moreover, in order to avoid
exponentially increasing sample size with increased num-
ber of divisions of each coordinate, we propose a subspace
sampling. We show by numerical experiments in simple
test functions that the algorithm effectively finds the global
minima in a short computational time and in a few function
evaluations.

1. INTRODUCTION

In recent years, many deterministic and stochastic algo-
rithms have been proposed for solving a global optimiza-
tion (minimization) problem (P) of a multivariate function
with bounded constraints:

(P)

∣∣∣∣∣∣∣∣

Min f (x) ≡ f (x1, x2, . . . , xn) ,
Subject to Li ≤ xi ≤ Ui , i = 1,2, . . . , n ,

Dn = { x ∈ Rn | [L1,U1] × · · · × [Ln,Un] } .

Deterministic algorithms [2] repeatedly divide a given
region into subregions, select a subregion in which a global
optimum is included, and give a guarantee of successfully
finding the global optimum under highly restrictive condi-
tions on objective functions (for example, Lipschitz conti-
nuity with a known Lipschitz constant).

On the other hand, stochastic methods involve random
sampling or a combination of random sampling and local
search. The latter algorithms, calledmultistart methods,
can find the global optimum with a high degree of accuracy.

However, these algorithms are very inefficient because
of repeated convergence of many sample points to the same
local minima that have already been found.

To overcome this problem,clusteringmethods [4] have
been used. These methods consist of the three steps: i) tak-
ing uniformly random sample points, ii) selecting sampled

points for grouping sample points around each local opti-
mum, and iii) forming groups of mutually close points us-
ing a clustering technique and applying the local optimizer
from the best point of each group. However, if multiple
local optima are included in a group, only one local opti-
mum can be found by this method. Inclusteringmethods,
sampled points are basically grouped by using only infor-
mation on the distance between two points. Overviews of
the clustering methods have been described in [4].

As more advanced methods, theMulti-Level Single Link-
age (MLSL) algorithm [3] and theTopographical Global
Optimization(TGO) method [5], which use information
not on only the distance between two neighboring points
but also on the function values of these two points, have
been proposed. The MLSL method uses a local optimizer
for each new sample pointxi except if there is already a
sampled pointx j with f (x j) < f (xi) and ‖ x j − xi ‖≤ rk,
where rk is the critical distance. However, this method
sometimes find local optima that have already been found.
The TGO method detects sample points so that alll-
neighboring points around each sample point are higher
than the sample point, and a local optimizer is used for each
detected point. This method, however, sometimes finds the
same local optima ifl is small. Moreover, a long time is
needed to calculate neighboring points of the current point
in both methods.

To overcome the problem of inefficient use of CPU re-
source for findingl-neighboring points, we propose a hy-
brid algorithm consisting of the following steps: i) sam-
pling points on a lattice, ii) detecting points by the TGO
method, iii) selecting a starting point by the MLSL method
and iv) terminating the algorithm and estimating sample
points on the next iteration by Boender’s expectation [1] of
the number of local minima.

The remainder of the paper is organized as follows. No-
tations are given in section 2. In section 3, MLSL and TGO
algorithms are described as background information. The
main algorithm is described in detail in section 4. Lattice-
based sampling and subspace sampling are described in
section 5. In section 6, results of tests on the proposed al-
gorithm by numerical experiments in Shekel functions are
shown. Finally, concluding remarks are presented.
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2. PRELIMINARIES

In a problem (P), suppose the objective functionf (x) is
continuous and smooth, and it has a finite number of iso-
lated local minimax∗k ∈ Dn (k = 1,2, . . . ,M).

A setX∗ of the isolated local minima and a setF∗ of their
values are written by

{
X∗ = { x∗1, x∗2, . . . , x∗M } ,
F∗ = { f (x∗1), f (x∗2), . . . , f (x∗M) } . (1)

Notation 1 Given a setA that consists of finite elements,
the size ofA is denoted by|A|.

Notation 2 An algorithm is expressed by using the follow-
ing notation:

(r1, r2, . . . , rq) ←a name(a1,a2, . . . , ap).

This means that if inputp-arguments (a1,a2, . . . , ap)
are given by applying the algorithma name, results
(r1, r2, . . . , rq) are obtained.

3. BACKGROUND OF OUR ALGORITHM

3.1. MLSL Algorithm

The MLSL algorithm [3] is one of the most efficient
mutistart-based methods.

In this algorithm, the local search procedure is applied to
every sample point in thek-th iteration except in the case
in which there is another sample point within the following
threshold-distance rk,

rk =
1√
π

(
σ · µ(Dn) · Γ

(
1 +

n
2

) logN
N

)1/n

, (2)

which has a lower function value. Here,σ is a constant,
µ(Dn) is the Lebesgue measure ofDn, Γ(·) is the gamma
function, andN is the total number of sample points.

Furthermore, the algorithm repeats sampling until the
expected number of minima|X∗|(γN−1)/ (γN− |X∗| −2)
exceed the number of different minima found|X∗| by less
than 0.5. Thus, the algorithm stops if

|X∗| (γN − 1)
γN − |X∗| − 2

≤ |X∗| + 0.5, (3)

whereγ (0<γ<1) is the reduced ratio of sampling, that is,
only γN-lowest points are used as candidate starting points
of a local search based on equation (2).

In the first iteration,N(1) (= N as the initial value) is
given, and in the subsequent iteration,N(k+1) (k = 1,2, . . .)
andN are updated by


N(k+1)← 1

γ
(2|X∗|2 + 3|X∗| + 2) ,

N←N + N(k+1).

The MLSL algorithm finds the set of local minimaX∗

and the set of minimal function valuesF∗ for a function
f over a searching regionDn for a given number of initial
sampling pointsN(1), for a given reduced ratioγ(0 < γ < 1)
, and for a given constantσ > 0. The steps of the algorithm
are as follows.

(F∗, X∗)←MLS L(Dn, f , N(1), γ, σ) ;

M1. [Initialize] SetX∗←∅ ; F∗←∅ ; k←1 ; N←N(1).

M2. [Sample points and select sample]Sample N(k)

points and select the number ofγN(k) lowest points.
Set Nr← γN(k). Transform the sample by selecting
the fractionγ of lowest points.

M3. [Determine rk and starting point of a local search
by MLSL, and apply the local search] Determine
rk by equation (2) and apply a local search from each
new pointxi (i = 1,2, . . . ,Nr ) except if there is a sam-
ple pointx j with f (x j)< f (xi) and‖ x j − xi ‖< rk. Add
the obtained local minimumx∗ to X∗.

M4. [Test for stop] If the stop condition (3) is satis-
fied, then stop. Otherwise set a new sample point
N(k+1)← 1

γ
(2|X∗|2 + 3|X∗| + 2), setN←N + N(k+1), set

k← k + 1, and go to stepM2.

The method is very simple, and no clustering is applied.
The only difficulty is to find the nearest neighbor for each
new point in an efficient way in the growing sample of uni-
formly distributed points.

In spite of its simplicity, the theoretical properties of the
method are quite strong. Ifσ > 4, then even if sampling
continues forever, the total number of local searches is fi-
nite with probability 1 [1].

3.2. TGO Algorithm

The TGO algorithm was proposed by Törn [4] and is also
a very efficient mutistart-based method.

The TGO algorithm consists of the following steps: i)
sampling the number ofNs points, ii) detectingx j such
that function values at its neighborl -points are higher than
f (x j),

f (x j) < f (xi) (i = 1,2, . . . , l), (4)

and iii) applying a local search from points detected.
This algorithm is also very simple, but there is a waste

of time in finding neighborl-points.

4. MAIN ALGORITHM

In this section, we show the main algorithm of our new
method. This algorithm consists of i) lattice-based sam-
pling, ii) detecting points close to each local minimum us-
ing TGO, iii) determining the starting point by MLSL cri-
teria, and iv) applying a local search.
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In the MLSL algorithm, onlyγN-lowest points are se-
lected afterN sampling. On the other hand, in our algo-
rithm γ is set to 1 because of allN sample points are se-
lected at step i) and points are detected by TGO at step ii).

The main algorithm finds the set of local minimaX∗ and
the set of minimal function valuesF∗ for a function f over
a searching regionDn, for a given number of initial sam-
plings N(1), and for a given constantσ > 0. The detailed
steps of the algorithm are as follows.

( F∗, X∗ )←GM ( f , Dn, N(1), σ ) ;

G1. [Initialize] SetX∗←∅, F∗←∅, k←1, N←N(1),
and γ←1. Set the set of these function values
F at sample points, the set of detected pointsXc

and the set of these function valuesFc as follows:
F←∅, Xc←∅, andFc←∅.

G2. [Sample points] GenerateN(k) lattice-based sam-
pling points (See the next section for details.)x(k)

i ∈
Dn (i = 1, . . . ,N(k)), evaluate these function values
f (k)
i ≡ f (x(k)

i ) (i = 1, . . . ,N(k)), and add these function
values to the setF.

G3. [Detect (select) points by TGO] Detect a pointx j

such that function values at its neighborl-points are
higher thanf (x j) like equation (4). Then add the point
x j to the setXc and its function valuef j ≡ f (x j) to the
setFc.

G4. [Determine rk and starting point of a local search
by MLSL, and apply the local search] Determine
rk by equation (2), and apply a local search from each
new pointxi ∈ Xc except if there is a sample point
x j ∈ Xc with f (x j) < f (xi) and‖ x j − xi ‖ < rk. Add
the obtained local minimumx∗ to X∗ and its function
value f ∗ to F∗.

G5. [Test for stop and set a new number of sample
points] If the stop condition (3) is satisfied, then
stop. Otherwise set a new number of sample points
N(k+1)← (2|X∗|2 + 3|X∗| + 2), update the total number
of sample pointsN←N+N(k+1), setXc←∅, Fc←∅,
k← k + 1, and go to stepG2.

From the set of local optimaX∗ and the set of optimal
valuesF∗ obtained by the algorithm, we can obtain the
global optimumx∗∗ and the global optimal valuef ∗∗ with
the smallest value in the set of local optimal valuesF∗.

5. SAMPLING

5.1. Lattice-based Sampling

In order to reduce wasted CPU time for findingl-
neighbor points, we propose lattice-based sampling. The
sampling consists of the following three stages.

First stage: This stage is used in the first iterationk = 1.
Divide each coordinate intoNd and generate points
x ≡ (x1, x2, . . . , xn) on a lattice as follows:

hi← (Ui − Li) /Nd (i = 1,2, . . . , n),
xi← Li + hi /2 + ki · hi (ki = 0,1, . . . ,Nd − 1).

Then setN(1)← (Nd)n.

Therefore, theki-th lattice (i = 1,2, . . . , n) point can
be denoted byxk1,k2,...,kn, and its function value can also
be denoted byfk1,k2,...,kn. In case such a sampling per-
formed, the condition (4) for detecting pointx j :

f (x j) < f (xi) (i = 1,2, . . . , l),

can be transformed into
∣∣∣∣∣∣∣∣∣∣∣

fk1,k2,...,kn< fk1+1,k2,...,kn, fk1,k2,...,kn< fk1−1,k2,...,kn,
fk1,k2,...,kn< fk1,k2+1,...,kn, fk1,k2,...,kn< fk1,k2−1,...,kn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fk1,k2,...,kn< fk1,k2,...,kn+1, fk1,k2,...,kn< fk1,k2,...,kn−1.

(5)

In this condition, the number of neighbor points be-
comesl = 2n, and we can easily calculate these neigh-
bor 2n-points.

Second stage:This stage is used in the second iteration
k = 2. Divide each coordinate intoNd and generate
pointsx j ≡ (x1, x2, . . . , xn) on a lattice as follows:

hi← (Ui − Li) /Nd (i = 1,2, . . . , n).
xi← Li + ki · hi (ki = 1,2, . . . ,Nd − 1).

Then set a set of grid pointsXG←XG+{ x ≡ (x1, x2, . . .
, xn) }, whereXG is initialized by an empty set. Let an
index setIG←{ 1,2, . . . , |XG| }. Then sample points
x(2)

i (i = 1, . . . ,N(2)) are selected by the following
steps.

if N(2) ≤ |XG| then
selectl i randomlyl i ∈ IG and setIG← IG − {l i},
x(2)

i ←XG
l i
, XG←XG − {x(2)

i } (i = 1, . . . ,N(2)).

else setx(2)
i ←XG

i (i = 1, . . . , |XG|), XG←∅.
if N(2) > |XG| then

generate uniformly random pointsx ∈ Dn,
and setx(2)

i ← x (i = |XG| + 1, . . . ,N(2)).

Since the neighborl-points of a pointx j become
neighbor lattice points at the first stage, we can also
easily find these neighbor points.

Third stage: This stage is used after the second iteration
k = 3,4, . . .. In this stage, if|XG| = 0, then sample
points x(k)

i (i = 1, . . .N(k)) are generate randomly in
Dn, otherwise sample pointsx(k)

i (i = 1, . . . ,N(k)) are
selected by similar steps in the second stage.

If an appropriate numberN(1) is determined, sampling at
stepG2 will be terminated by the second stage (k = 2).
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5.2. Subspace Sampling

In the lattice-based sampling, sample size (Nd)n expo-
nentially increases with respect to dimensionn. In or-
der to avoid this problem, we proposesubspace sampling,
which samples on a reducednp(< n)-dimensional space.
We illustrate an example of dividing the original even-
dimensional spaceRn into two half-dimensional subspaces
Rn/2 andRn/2. Moreover, in order to easily understand the
method, we treat the Shekel-m problem (PS) defined on a
4-dimensional space as follows:

(PS)

∣∣∣∣∣∣∣∣∣∣∣

Min f (x1, x2, x3, x4) = −∑m
i=1

1∑4
j=1{(x j − ai j )2} + ci

,

Subject to 0≤ x1, x2, x3, x4 ≤ 10, (i = 1,2,3,4),
D4 = { x ∈ R4 | [0,10]× [0,10]× [0,10]× [0,10] },

wherem is the number of local minima.
We split the original problem (PS) defined on a 4-

dimensional space into the following two subproblems
(PS1) and (PS2) defined on a 2-dimensional subspace:

(PS1)

∣∣∣∣∣∣∣∣∣∣∣

Min f1(x1, x2) = −∑m
i=1

1∑2
j=1{(x j − ai j )2} + ci

,

Subject to 0≤ x1, x2 ≤ 10, (i = 1,2),
D2 = { x ∈ R2 | [0,10]× [0,10] }.

(PS2)

∣∣∣∣∣∣∣∣∣∣∣

Min f2(x3, x4) = −∑m
i=1

1∑4
j=3{(x j − ai j )2} + ci

,

Subject to 0≤ x3, x4 ≤ 10, (i = 3,4),
D2 = { x ∈ R2 | [0,10]× [0,10] }.

Let the number of divisions at each coordinate beNd =

10 in the case where the sample size 104 = 10000 in PS is
vastly reduced to the size 2·102 = 200 in (PS1) and (PS2).

In two such subspaces, sampling and detecting points by
TGO are performed. Let two groups of the points by de-
tected TGO in the two subproblems (PS1) and (PS2) be
x1

j ≡ (x1
1 j , x

1
1 j) ∈ D2 ( j = 1, . . . ,m1) andx2

k ≡ (x1
3k, x

2
4k) ∈

D2(k = 1, . . . ,m2), respectively. Then, the full-dimensional
detected pointsx j ∈ D4 ( j = 1, . . . ,m1) are constructed as
follows:

x j ≡ (x1 j , x2 j , x3 j , x4 j)← (x1
1 j , x

1
2 j , x

1
3k, x

1
4k) j = 1, . . . ,m1 ,

where
(x1

3k, x
1
4k) = argmin

1≤k≤m2

{
f (x1

3k, x
1
4k)

}
.

6. SIMPLE NUMERICAL EXPERIMENTS

Our algorithm was implemented in programming lan-
guage C, and the local search used in the experiment was
the Quasi-Newton method (BFGS formula) with finite dif-
ference approximation for calculating gradient∇ f .

We tested the algorithm for Shekel test functions: S-
m (m = 5,7,10) given in the problem (S). A comparison
among numerical results obtained by our method, the TGO
method [5] and the MLSL method [3] is shown in Table 1.

Table 1: Sekel’s test functions S-m of 4 variables withm
local minima in an interval 0≤ xi ≤ 10 of each coordinate

Function TGO MLSL Our method
Name Nf e UT Nf e UT Nf e UT
S-5 265 10.8 404 1 174 0.37
S-7 − − 432a 1 207 0.53
S-10 − − 564 2 210 0.67

Nf e : Number of function evaluations.
UT : Unit time (UT = 1 is 1000 function evaluations

of S5).
a : The global minimum was not found in one of four
trials.

These results show that our algorithm can effectively find
the global minimum in a fewer function evaluations and a
shorter computational time than can other methods.

7. CONCLUDING REMARKS

We have proposed an algorithm for solving global opti-
mization problems that consists of the following steps: i)
lattice-based and subspace sampling, ii) detection of points
by the TGO method, iii) determination of the starting point
by the MLSL criterion, and iv) termination of the algorithm
and estimation of the number of sample points on the next
iteration by Boender’s expectation [1] of the number of lo-
cal minima.

We have shown that our algorithm can find a global min-
imum in a short time because calculation for finding neigh-
bor points is completed in a much shorter time than that in
the case of using the TGO method.
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