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Abstract—Nonlinear dynamics on coupled chaotic os-
cillatiors is considerable interesting for a wide variety of
systems in several scientific fields and applications. This
paper presents a novel type of several phase synchroniza-
tion modes in coupled asynchronous multimode chaotic
oscillators. Each chaotic circuit can individually behave
both chaotic or periodic oscillations in the same parameters
asynchronously. In this study, such chaotic circuits coupled
by some inductors as a ring are proposed and classifications
of phase synchronization modes are investigated. In nu-
merical simulation, many types of phase synchronization
modes are confirmed.

1. Introduction

Many types of coupled systems have been widely studied
in order to clarify inherent features and many researchers
have already proposed and investigated them. Coupled
chaotic systems are as one of them which have several vari-
eties of interesting behavior with emergent properties. The
dynamics of chaotic multimode oscillations or chaotic itin-
erancy on several coupled systems is still considerable in-
terest from the viewpoint of both natural scientific fields
and several applications. They have been confirmed in sev-
eral systems; e.g., coupled van der Pol oscillators[1], laser
systems[2], and so on. As interesting phenomena, there are
famous chaotic attractors such a double-scroll family[3],
n-double scroll[4]–[6] and scroll grid attractors[7]. If the
active elements including in the systems have complex-
ity constructed by compound some nonlinear elements,
it can be easily consider that they yield several interest-
ing features. The circuit which can individually behave
both chaotic or periodic oscillations in the same parame-
ters had been shown[8]. This type of circuit was called a
multi–state chaotic circuit(abbr. MSCC). Multimode oscil-
lations in coupled two multi–state chaotic circuits had also
been investigated[9]. Such complex and strange nonlin-
ear structures yield a wide variety of chaotic phenomena.
It is known that complex behavior can be confirmed such
chaotic itinerancy and spatio-temporal chaos on the large
scale coupled networks.

In this study, a novel type of phase pattern or multi-
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Figure 1: Coupled model of chaotic circuits by several in-
ductors as a ring.

mode asynchronous oscillations on the coupled MSCCs as
a ring is investigated. The schematic diagram of the cou-
pled circuits is shown in Fig. 1. In the past our works, we
had presented and confirmed that multi-state oscillations
both chaotic and non–chaotic (limit cycle) can be gener-
ated asynchronously in the same parameters on the com-
puter simulations [8] and also that realization on the real
circuits [10]. In this paper, firstly the design scheme of a
MSCC is shown briefly. Secondary both chaotic and peri-
odic oscillations in the same parameters which can be con-
firmed in numerical simulations and circuit experiment are
also shown. Finally phase synchronization and classifica-
tion of several phase patterns in some MSCCs coupled by
inductors are investigated. Several types of phase synchro-
nization modes are confirmed asynchronously, but all cir-
cuit parameters are the same.

2. Model Description

The circuit shown in Fig. 2 is modified chaotic circuit
from a change model in a well–known three dimensional
chaotic circuit proposed by Inaba and Saito[11]. The origi-
nal circuit consists of three memory elements, some diodes
and designed negative resistors. It is well known that it
can behave as Rössler type chaotic motions. We substi-
tute a symmetrical continuous five segments piecewise lin-

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

525



Figure 2: Proposed chaotic circuit with five–segment piece-
wise linear resistors.

ear resistor for the negative active resistor including in the
original chaotic circuit. Further this circuit possesses an-
other symmetrical piecewise nonlinear resistor with respect
to the origin.

At first, we approximate thei − v characteristics in the
part of both diodes andE1 by the following three-segment
piecewise linear functionsvd(iL2k).

vd(iL2k) =
1
2

(rsiL2k + Vd − |rsiL2k − Vd|) (1)

where threshold voltageVd is realized by the total of
threshold of the diodes and supply DC voltageE1, andrs

is a resistance value at the parallel diode in while off state.
The variablevd(iL2k) determines their chaotic dynamics.

We now consider the coupled model which combinedN
chaotic circuits are connected by inductorsL0 as a ring
structure. The chaotic circuits are composed by all the
same parameters. Therefore when we choose a threshold
voltage valueVd as a criterion, the circuit equation of cou-
pled MSCCs can be normalized by changing the following
variables and parameters,

iL1k =
√

C

L1
Vd xk , iL2k =

√
C

L1
Vd yk ,

vk = Vd zk , t =
√

L1C dτ , “ · ” =
d

dτ
,

α =
L1

L0
, β =

L1

L2
, γ = g

√
L1

C
, δ = rs

√
C

L1

(2)

whereg is a temporary parameter as a linear negative con-
ductance value ofNR if we consider the negative resistor
as an ideal linear function. The differential equation con-
cerned withL0 can be eliminated by using KCL at the loop
of the inductorsL0 andL1k, then the circuit equations in
each system are reduced to three–dimensional equations.
Consider that the part of negative resistanceNR in Fig. 2
replaces to the functionh(zk) of a voltage sourcezk, then
the circuit equations can be rewritten by





ẋk = zk

ẏk = β
(
zk − f(yk)

)

żk = α(xk−1 − 2xk + xk+1)
−(xk + yk)− h(zk)

(3)

f(yk) =
1
2

{
|δyk + 1| − |δyk − 1|

}
. (4)

The functionh(z) which can be designed by symmetri-
cal five–segment piecewise linear with respect to the origin
for the parameters four breakpoints at{±Bp1,±Bp2} and
five slopes by{m0,m1,m2,m1,m0} is described with a
canonical form as follows.

h(z),m0γ
∗z+

γ∗

2

{
(m0−m1)

(|z−Bp2|−|z+Bp2|
)

+(m1−m2)
(|z−Bp1|−|z+Bp1|

)} (5)

where the parameterγ∗ is used for a basic value, hence the
valuesmk(k = 0,1,2) mean the ratio to the valueγ∗.

We can realize the MSCC on the real circuit. In order
to realize the nonlinear characteristic ofNR, we designed
a piecewise linear resistor constructed by using some oper-
ational amplifiers(op amps) and resistors. The details of a
construction are described in [12].

Our proposed circuit can behave both chaotic and pe-
riodic oscillations in the same parameters when we sup-
ply with different initial conditions. Figure 3 shows some
snapshots obtained from circuit experiment. The detailed
schematic design had been explained in Ref. [8][9][10] and
the circuit settings are put in the caption. As a result, both
chaotic and periodic attractors can be observed in the same
circuit parameters.

Figure 4 also shows a typical chaotic attractor obtained
from computer calculation results in the case ofN = 1 for
the parametersβ = 10.0, γ∗ = 0.78, δ = 100, with piece-
wise linear characteristics realized by breakpointsBp1 =
0.30, Bp2 = 0.56, slopesm0 = −1.0, m1 = 0.65 and
m2 = −0.2. We can confirm that both chaotic and peri-
odic attractors coexist in the same parameters. In order to
know structure of these attractor, the 3-D shape attractor
is also drawn. Further a bifurcation diagram by changing
the parameterγ∗ is shown in Fig. 5. As increasingγ∗ pe-
riodic attractor bifurcates to chaos in the following routes
while keeping the limit cycle at around the origin. Oscil-
lation of symmetrical 1-period→ asymmetrical 1-period
→ bifurcates to 2n period→ asymmetrical slight chaos→
symmetrical fluttered chaos. We can observe that both two
oscillation modes exist separately in the same parameters.
However, chaotic attractor disappear and limit cycle is only
observed whenγ∗ is larger than around 0.876(≡ γ∞). The
reason is that circuit dynamics will stabilize and settle in a
limit cycle if trajectory becomes larger and is soon drawn
into inside area.

3. Numerical Simulations

In this section, the model of coupled MSCCs by induc-
tors are investigated. We show some computer calculation
results by using 4-th order Runge–Kutta method with time
step size∆t = 0.001 for the circuit equation (3), (4) and
(5) in some cases ofN = 2 ∼ 7 as follows.
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Figure 3: Some snapshots of the circuit experiment and nu-
merical simulation. (a)v–i characteristics of the designed
piecewise linear resistor, horizontal: 5V/div. (b) chaotic at-
tractor, (c) limit cycle, horizontal: 2V/div. Circuit param-
eters settings: L1 = 123.1mH, L2 = 10.2mH, C = 68.7nF,
R1 = 33.2kΩ, R2 = 21.7kΩ, R3 = 1.22kΩ, R4 = 196Ω, R5 =
333Ω, R6 = 1.47kΩ, R7 = 10.3kΩ, E1 = 4.80V, E2 = 2.78V.
Threshold voltage of one diodevth ' 0.78V.

(a) (b)
Figure 4: Drawing attractor onto thez − x plane in (a),
and 3-D trajectories in (b) for the parametersβ = 10.0,
γ∗ = 0.78 andδ = 100. h(z): [Bp1, Bp2, m0, m1, m2] =
[0.35, 0.55, -1.0, 0.65, -0.20]

Figure 5: Bifurcation diagram by changing the parameter
γ∗ from 0.2 to 1.0 forβ = 10.0 andδ = 100.

3.1. Two subcircuits caseN = 2

Now we consider that the number of the coupled MSCCs
is two. This case corresponds to the model in [9]. Though
the detail results are omitted, we can confirm several types
of phase synchronization modes in this model. In this case,
four asynchronous oscillation modes could be confirmed
consequently by numerical simulations when the initial
conditions are varied. We could observe an in-phase syn-
chronous limit cycle, an anti-phase synchronous limit cy-
cle, an anti-phase chaotic synchronous state, and a double-
mode oscillations in all the same parameters. In this cou-
pled two MSCCs, double–mode chaotic oscillations were
confirmed.

3.2. Three subcircuits caseN = 3

In this section, we consider the case ofN = 3. The
circuit parameters in each MSCC are set as all the same
parameters in the section 2 with additional parameterα =
0.50. Compare with the caseN = 2, several different syn-
chronization phenomena can be found. Because all types
of the results can not be represented, some simulation re-
sults are only shown here. Figure 6(a) shows a case of three
phase synchronization of three limit cycles in while keep-
ing 2π/3 phase difference. From top of the figure, attrac-
tors drawing ontoz–x plane, synchronization state ofzk–
zk+1 plane, and waveform of difference between the two
variableszk − zk+1. Figure 6(b) shows in-phase synchro-
nization of them. They are corresponding normally to three
phase synchronization in generic oscillators. The figure (c)
shows a multimode oscillation of both chaotic and periodic
attractors. Further (d) shows a new type of synchroniza-
tion mode applicable to no other one. We could confirm to
coexist with several types of synchronization modes.

3.3. Discussion of Coupled MSCCsN >= 4

In large coupled systems forN >= 4, it is easily expected
to be confirmed more complex behavior. We now show
only some results in Fig. 7 for the case ofN = 4 and 7. In
the case ofN = 4, several types of synchronization modes
are confirmed. On the other hand, in the case ofN = 7,
no much many synchronization modes have confirmed in
such parameter settings. However when the number ofN
is large and the circuit parameters should be set appropri-
ately, a certain kind of phase propagation phenomena may
be confirmed. Furthermore several complex behavior could
be also confirmed in a large number ofN .

4. Conclusions

In this study, we have investigated several synchroniza-
tion modes in coupled multi–state chaotic circuits. Coex-
istence of several types oscillation modes have been con-
firmed in coupled MSCCs by inductors as a ring for sev-
eral cases. On large scale coupled chaotic circuits, we con-
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Figure 6: Some simulation results in the case of three MSCCs coupled by inductors.α = 0.50,β = 10.0,γ∗ = 0.68,
δ = 100. h(z): [Bp1, Bp2, m0, m1, m2] = [0.35, 0.55, -1.0, 0.65, -0.20]. (a) three phase synchronization, (b) in-
phase synchronization, (c) multimode synchronization of both chaotic and periodic oscillations and (d) other type of
synchronization modes.

sider that several types of complex behavior are expected
to yield novel chaotic phenomena e.g., chaotic itinerancy,
spatio–temporal chaos, multi–agent systems, soliton like
wave propagation phenomena, and inherent emergent prop-
erty, in which concerned with other current topics.
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Figure 7: For some cases of three MSCCs coupled by in-
ductors. The parameters are given by all the same settings
as in Fig. 6 except for the number of circuits.
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