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Abstract—We propose an algorithm by which the pa-
rameter of the logistic map is converged from a chaotic ini-
tial value to a superstable one in a periodic window. We
further improve it to enhance its robustness against noise.
Algorithms like this can be applied to memory when re-
garding superstable orbits as memory states with noise.

1. Introduction

The one-dimensional unimodal map has been exten-
sively studied as the simplest nonlinear map with complex
chaotic dynamics [1-3]. A typical example is the logistic
map, which has a parameter controlling its nonlinear dy-
namics. The parameter is generally treated as a constant
in time. In some studies, however, this is not constant but
changes over time due to state variables. These studies used
such configurations to obtain the required parameter value.

For instance, Melby et al. [4] proposed a model where
the parameter of the logistic map was changed by a low-
pass filtered feedback from the time series at every cer-
tain steps whose lengths had previously been determined.
This means that the control parameter changes more slowly
than the variable, originally proposed by Haken [5]. Con-
sequently, the control parameter left the chaotic regime and
entered into the periodic window and converged.

Melby et al. argued the relation between their model
and living things from the viewpoint of adaptation to the
edge of chaos, which is the bound between a periodic and a
chaotic phase. Suzuki and Kaneko [6] took the logistic map
as the dynamics of bird song. As a result of imitation, the
dynamics of song, i.e., the parameter value also converges
to the edge of chaos.

In this paper, we propose another model for the logis-
tic map that changes the parameter through its own system.
Roughly speaking, the map changes its parameter values
by setting the maximum of certain interval of the time se-
ries to the extremum of the next map. This mechanism
causes the parameter value to decrease and converge to the
point where the extremum is equal to the maximum. This
converged parameter generates a superstable and periodic
solution. Hereinafter, we explain the algorithm in details

responsible for this process.

2. The algorithm

Consider an one-dimensional unimodal map on one pa-
rameter,
x(n+1) = f(x(n),a). (D
Here f is a smooth function f: I — I,1 = [0, 1], f(0,a) =
f(1,a) = 0. Since f is unimodal, it has one critical point
x*in I. As x" is a solution to f"(x,a) = 0, it is written as a
function of @, namely

X" = g(a). )

We now introduce supertrack function ¢,(a), which is
the pth iterate of the critical point [7]. According to ¢o(a) =
x* and Eq. (2), the supertrack function is defined by

do(a) = g(a) 3)

and
dp(a) = f(¢p1(@),a), p=1. 4)

This definition leads to ¢;(a) being the extremum of
f(x,a). If there is a solution to the equation

¢1)(a) =x &)

s which is written as Agp, the set
{glasp), p1(asp), ..., ¢p-1(ay,)} is called superstable p-
periodic solutions. By solving Eq. (5), we obtain the value
for a parameter for superstable p-periodic solutions. We
call this the superstable p-periodic parameter.

Let us now introduce the algorithm for the map we pre-
viously described.

1. Give the initial conditions for the parameter and the
variable, a(0), x(0)

2. Tterate function f for T steps from x(0) using a(0).
3. Set x to the maximum value of time series {x(n)}1<,<r.

4. Solve equation £ = ¢1(a)(= f(g(a), a)) with respect to
a and set the solution as a(1).
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5. Return to step 2 and set initial conditions x(7), a(l).

Here, we consider a case where there is only one solution
to the equation in step 4, i.e. , ¢;(a) has an inverse func-
tion. The logistic map typically satisfies this condition. We
apply this algorithm to the logistic map and find that the pa-
rameter converges from chaotic initial value to superstable
one ag, in a periodic window and analyze the stability of
agp, qualitatively.

2.1. Application of algorithm to logistic map

The logistic map is defined as follows.
x(n+ 1) = ax(n)(1 —x(n)), a€[0,4], x€[0,1]. (6)

Here, x is a variable and a is a parameter.

The behavior of the logistic map is determined by pa-
rameter a. If 0 < a < 3.569 ... the dynamics of x is pe-
riodic. However, if 3.569... < a < 4, the dynamics of x
is mostly chaotic. There are, however, values for the pa-
rameter in this range that give periodic orbits. These values
are called periodic windows. We know that there are thou-
sands of periodic windows. In addition, as there also exists
a superstable periodic orbit in parameter values which gen-
erate a stable periodic solution in a window, there are too
many superstable periodic solutions in the chaotic regime
3.569...<a<4.

The dynamical system that represents the algorithm ap-
plied to the logistic map is defined as follows.

x(n+1) = alk)x(n)(1 — x(n)), (7
aky = 4%, )
X = onax. x(tr = J)- )

Here, 7, = kT, k = 0,1,2,..., k = [n/T], where |y is a
maximum integer less than y. The extremum ¢;(a) = a/4.
Now, as parameter a(k) is no longer constant with time, we
call a(k) a nonlinearity variable from now. We also explain
the dynamics of nonlinearity variable a(k) qualitatively.

2.1.1. Nonincreasing dynamics of nonlinearity variable
a(k)

The main process in the algorithm is step 4. This means
that the nonlinearity variable is determined such that max-
imum % is equal to the extremum of the new return map,
namely X = ¢1(a(k + 1)) (property (A)). Since the logis-
tic map is unimodal and T is finite, the values that x can
take are less than the extremum, namely, £ < ¢1(a) = a/4.
Here, because of property (A), if X < a/4, then a(k + 1) <
a(k) and if X, = a/4, then a(k + 1) = a(k). In the latter,
if nonlinearity variable a(k) generates chaotic dynamics in
x, according to the nonperiodicity of chaos, the time se-
ries does not contain an extremum in the next procedure of
the algorithm, that is, %1 < a/4 . Therefore, the next
nonlinearity variable is smaller than the previous, i.e. ,
a(k +2) < a(k + 1). However, if a(k) generates periodic
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Figure 1: Stability of superstable (fixed) point in (a, x)-
plane. Dashed line indicates dynamics of nonlinearity vari-
able.

dynamics, the maximum is also the same as the extremum,
that is, fx+1 = a/4 in the next procedure. Therefore, the
next nonlinearity variable is also the same as the previous,
ie. , a(k +2) = a(k + 1). This means that a(k) converges
fixed point a in this case. From the definition of a super-
stable periodic parameter, @ is equivalent to a,,. Thus, we
can see that the dynamics of the nonlinearity variable is
nonincreasing.

2.1.2. Stability of fixed point a

As previously discussed, a fixed point is a superstable
periodic parameter. Furthermore, there is a superstable p-
periodic orbit in parameter values which generate stable p
periodic solutions in a periodic window. Hence, we con-
sider the (a, x)-plane so that we can observe the dynamics
of a(k) in a periodic window. Figure 1 shows the dynam-
ics of a(k) in a periodic window. Line ¢(a) = a/4 is the
track of the extremum. Since the maximum values of peri-
odic solutions are less than the extremum values, the fixed
point is a tangent between ¢, (a) = a/4 and the track of the
maximum solution. In the figure, step 4 of the algorithm
is equivalent where a(k + 1) is the intersection of x = a/4
and the horizontal line from (a(k), X) in the (a, x)-plane.
This process is indicated in Figure 1 as a dashed line. By
iterating this process, the nonlinearity variable converges to
the tangent, that is, superstable periodic parameter ag, = 4.
Looking at Figure 2, if nonlinearity variable a(k) is less
than @, then a(k) diverges from a. This ensures that a(k)
is stable at @ < a(k) and unstable at a(k) < a, considering
perturbation around a. Therefore, we can see that the fixed
point is like a Milnor attractor. As we describe later, this
stability in the algorithm is not effective against noise.
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Figure 2: Stability with noise of superstable point in (a, x)-
plane.

3. Improvements in adding noise

The algorithm cannot accommodate for noise because
of the following. 1) Fixed point a is not asymptotically
stable in the dynamics of a(k) (Cf. 2.1.2). Therefore, if
nonlinearity variable a(k) is perturbed from the fixed point
toward a(k) < a, it never returns to a. 2) According to
the algorithm, noise added to variable x also have an effect
on nonlinearity variable a(k). These two facts imply that
the fixed point dose not retain its state stably when noise is
added.

To avoid this, we improve the algorithm as follows. As-
sume that noise is not added constantly but periodically and
the superstable parameter is given by the conventional al-
gorithm without noise. Figure 3 shows the improved al-
gorithm where the line x = a/4 is rotated steeply to focus
on the superstable point (agp, x"). That is, the new line is
x = k(a —ay) + X', k > 1/4. This is called the crite-
rial line, which does not cross the track of the maximum
solution except the targeting superstable point. This proce-
dure can make the superstable point asymptotically stable
in terms of the dynamics of the nonlinearity variable a(k).
Furthermore, the dynamics of variable x is superstable at
that point.

4. Numerical results

We do numerical simulations of the algorithm and ap-
ply these to the logistic map. Table 1 lists a, period, and
its corresponding parameter value calculated by solving eq.
(5) with Newton method for several different values of x(0)
and a(0) = 4. We determine the period to an accuracy
of 107% and the periodicity is determined by negative Lya-
punov exponents. In every value of x(0), the nonlinearity
variable successfully converges to a superstable parameter
value.

Figure 4 shows the time series of nonlinearity variable

Periodic window

Figure 3: Improved algorithm in (a, x)-plane.

a(k). Initial value of nonlinearity variable a(0) is also 4.
As discussed in subsubsection 2.1.1, a decreases and con-
verges to superstable periodic parameter a1 (correspond-
ing period: 24). Moreover, as discussed in subsubsection
2.1.2, negative small perturbation (—=107°) is added at step
500 changes a1 to smaller superstable periodic parameter
agp (corresponding period: 18).

Figure 5 shows the time series when noise is added. In
the first 30,000 steps, we obtained a superstable parame-
ter with the original algorithm. After that, we use the im-
proved algorithm and add noise every 15,000 steps. The
noise follows normal distribution N(x, 0.01). The slope of
the criterial line is 0.5. The results reveal that our improved
algorithm can maintain a superstable 18 periodic solution
robustly against noise.

Table 1: Relation between x(0), period, and a. T = 100.
Bottom row lists superstable parameter values calculated
by solving Eq. (5) with Newton method. a(0) = 4.

x(0) 0.1 0.2 0.3 04
a 3.85210 | 3.96093 | 3.85033 | 3.85511
period 15 8 18 24
a(Eq. (5)) || 3.85210 | 3.96093 | 3.85033 | 3.85511

5. Discussion

As we can see from the numerical results, the period
generated by the converged superstable parameter is not
predictable. This is because the nonlinearity variable goes
through chaotic regimes, so that the dynamics of variable
x is not predictable. Therefore, it is impossible to predict
the period generated by the converged parameter from the
initial condition. So we suggest another usage for the algo-
rithm, especially the improved one.
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Figure 4: Time series for nonlinearity variable a(k). Initial
conditions are given as a(0) = 4 and x(0) = 0.4. First a(k)
converges to superstable parameter value, which generates
period 24 solution. Then, adding noise at k = 500 shifts
orbit to period 18.

As previously discussed, there are a numerous num-
ber of superstable periodic solutions in the chaotic regime
3.569... < a < 4. The orbits generated by these parame-
ter values are attractors. Therefore, if each attractor corre-
sponds to some information, we can employ these to store
data as memory states. If this memory is implemented, one
device represented by the dynamics of the logistic map has
many separate data storage states and these states can be
maintained superstably.

Our algorithm is efficient because the parameter value is
maintained dynamically by the interaction of variables and
nonlinearity variables. To apply the algorithm to memory
where the period represents information for instance, we
need to consider the following two steps.

1. Solve Eq. (5) that obtains a superstable periodic solu-
tion with the required period.

2. Maintain the parameter with the improved algorithm.

Here, step 1 is interpreted as a static process, while step
2 is dynamic. These steps imply that superstable periodic
orbits can be employed for superstable memory states.

In conclusion, the algorithm we have proposed con-
verges the parameter from a chaotic initial value to a su-
perstable periodic one. If the process leading to a super-
stable periodic parameter value is taken as a data storage
state, the improved algorithm against noise can be applied
to superstable memory. However, it needs a quantitative
analysis on the number of conservable states and the rela-
tion between these and the effect of noise with respect to
the numerical precision.
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Figure 5: Time series for x when noise is added. In the
first 30,000 steps, the original algorithm is applied, after
which the improved algorithm is applied. Noise is added
every 15,000 steps starting from 30,000 as indicated by the
arrows. k = 0.5. Period 18 is maintained.
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