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Abstract—Superiority of Markovian spreading se-
quences in code acquisition performance is presented. We
discuss acquisition method based on a posteriori proba-
bility for an asynchronous direct sequence/code division
multiple access (DS/CDMA) systems, where single-user
matched filter receiver is used and sampling rate is twice
per chip. Since bit error rate of Markovian codes has al-
ready been shown to be better than linear feedback shift
register (LFSR) codes in many papers, Markovian codes
are a strong candidate for spreading sequences.

1. Introduction

Markovian spread spectrum (SS) codes were proven
to minimize the average interference parameter (AIP) in
asynchronous direct sequence/code division multiple ac-
cess (DS/CDMA) systems [1]. It is reported in [1] that
minimum bit error rate (BER) of Markov codes is lower
than that of independent and identically distributed (i.i.d.)
codes as well as linear feedback shift register (LFSR) se-
quences such as Kasami and Gold codes. This was also
supported by [2, 3, 4]. In [3], a variance of multiple ac-
cess interference (MAI) with respect to code symbols was
discussed and SS codes generated by some Markov chains
were shown to be superior to the ones generated by se-
quences of i.i.d. random variables in an asynchronous state.

Complete synchronization of the receiver is assumed
in [1]-[4]. However, the question arises whether code ac-
quisition performance of Markovian SS codes is superior
or inferior to the i.i.d. codes. Serial search acquisition was
employed for acquisition of Markovian SS codes [5, 6]. We
have proposed an acquisition method based on a posteri-
ori probability [10], where a chip-synchronous DS/CDMA
system was assumed and matched filter output was sampled
once each chip time. This paper shows that method can be
also applied to the asynchronous systems by increasing the
sampling rate up to twice per chip.

In [11], a post-filter, which is a digital filter placed af-
ter the matched filter, was shown to reduce the variance of
MALI for i.i.d. codes up to the level of Markovian codes.
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Figure 1: asynchronous DS/CDMA system: M.F. denotes
matched filter.

Thus, the two codes have the same performance as far
as post-filter is applied. This paper considers, however,
matched filter receivers without post-filtering. Simulation
result shows that code acquisition of Markov codes is faster
than that of i.i.d. codes. This result leads us to conclude
that Markovian codes are a strong candidate for SS codes.

2. Matched Filter Output Model

Fig. 1 shows an asynchronous DS/CDMA system with .J
users. Let d(7) and X (¢) be data and code signals of j-th
user defined by d(1) = 35, dYu(z/T - p) and X9 (1) =
Z;“:,oo Xf]j)u(t/TC —q), where T is data period, T¢ is chip
duration and u(r) = 1 for 0 < ¢ < 1 and u(¢) = 0 otherwise.
Assume that SS codes X¥) = {Xf/)};‘;m has period N and
that T = NT¢. Since signals from different users arrive
asynchronously at the receiver, received signal is given by

J

r0 = > dP( - )XVt = 1)) + (1), (1)

j=1

where 7; denotes time delay of j-th user and n(f) is com-
mon channel noise assumed to be white Gaussian with two-
sided power spectral density Ny/2. Output of the i-th user’s
correlator at time instant 7 is

T
() = x® d
(1) fo Or(t + H)dr
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where 70() = [ n(t + DXO(1)dr and
()
T - - -
= f AP -t; + DXV - 1; + DXO(0)dr. (3)
0

For j # i, () is called multiple access interference
(MAI) and ¢®? is referred to as auto-correlation or self-
interference. We denote ¢ as &9 for convenience.

It follows from (3) that (" (1;1;) = {“D(T + Ajt; + A)
holds for any A. If 0 < t; < T and 7 = pT, then (3)
becomes

(Tt = d) i) + dopif(T 1), (@)

where p;;(1) = fOPT XD XD (r+71)dt is a cross-correlation
of SS code signal with continuous time delay 7. For an
integer 0 < £ < N—1and 0 < s < T¢, we have

(Tc — )Ry (£ X, X7

+SRY (€ + 1; X0, Xy, (5)

pijfTc + ) =

where  Ry(£; X0, X) is Pursley’s aperiodic cross
correlation function with discrete delay defined by
Rﬁ({?; X0 x0y = N X,(zl)X,(lJ:ﬁ. For simplicity, X and
X% are denoted, in brief, as X and Y hereinafter.

SS codes with Markovity have attracted considerable at-
tention because they show smaller BER than i.i.d. codes
as well as LFSR sequences. The following is a statis-
tical property of cross- and auto-correlation functions, if
{Xf/)}q>0 is a Markov chain.

2.1. Markovian SS codes

Let X = {X,},and ¥ = {V,}~, be sequences of
{—1, +1}-valued binary random variables. Suppose X and Y
are mutually independent, stationary 2-state Markov chains
with 2-dimensional transition matrix P. Let Prob{X, =
—1} = Prob{Y,, = —1} = Prob{X,, = 1} = Prob{Y,, = 1} =
%. For simplicity consider irreducible, aperiodic Markov
chains, then for €, m, k > 0 we have [3]

Ex[X,] = Ey[Y,] = 0, Exy[X,Y,1el =0, (6)
Ex[X,Xuie] = 4 Ex[XuXureXnseni] = 0, (7)
Ex [ X, Xt e XnsorkXnsorkem] = /IHm (8)
where E[-] denotes the expected value with respect to the

distribution of a random variable Z, and A is the eigenvalue
of P other than 1.

2.2. Previous Results: Variance of Matched Filter Out-
puts

Applying (6)-(8) to Pursley’s aperiodic cross- and auto-
correlation function, we get for0 < { < N-1,0<{+k <

N-landk >0[3, 7]

Exy[Ry(6; X, Y)] =0, 9)
Ex[RA(6; X, X)] = (N - O, (10
Covxy[RY(6; X, Y), Ry(( + k; X, Y)]
:(N—f—k)(k+1+/12)/1"+el (1n
1-2
Covx[Ry(6; X, X), Ry (€ + k; X, X)]
_ {( 1+/12) .y
=(N-C-k)9|k+ (1-2%

—202%¢ }/1" +&  (12)

where €| and &, are negligible. It follows from (6) and (9)
that expectation of matched filter output with respect to SS
codes is equal to that of autocorrelation function, i.e.,

J
D B[] + Bxln® ()]

j=1
Ex [ (13 1:)].

Exy[z?(7)]

(13)

Assuming data sequence of one user is independent of
that of other user, we get Vary[z9(1)] = Varx[¢9(t; )] +
2. jzi Varx[{ @ (r; ]+ Varx[77”(1)]. The variance of MAI
and self-interference were respectively given in [3, 7].

Theorem 1 The variance of normalized multiple-access
interference is [3]

21+/1+/12

a9

Var XYT;

\/—[(lj)( , 1)]

where T is a random variable for t; uniformly distributed
in [0, T].

Theorem 2 The variance of normalized self-interference
is given by[7]

Vary[ W0 (pT; (65 + 85)Te)] = (1 - £5)°G+ (6s)
+82G. (b5 + 1) + 2e5(1 — £5)H, (L)
+dd) (1 - £5)°G(¢s)

+e3G-(Cs + 1) + 2e5(1 —e)H_(Ls)},  (15)

where G (£s) = 155 — (265 + £, H(ls) = 25 -
Qs +1+ B 20641 G (£g) = (N =20+ E5)aAV2 and
IH_ (f )_ 2[+1(N 20 -1+ 1+l“)AN 20— 1

3. Acquisition Method Based on a posteriori Probabil-
ity Threshold Rule

We proposed an acquisition method based on a poste-
riori probability for a chip-synchronous DS/CDMA sys-
tem [10]. This section shows that the method can also be
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applied to asynchronous system by increasing the sampling
rate up to 2/T¢.

Consider sampling the matched filter output to acquire
the i-th user’s time delay. For accuracy of estimated time
delay and avoiding too much complexity, sampling rate
2/T¢ is employed in this paper. We can generalize the
following discussion to the case of sampling rate M/Tc,
where M is an integer. Let 22 be m-th sample of i-th
matched filter, i.e.,

J
jy def (; i\ ;
&2 OmTe/2) = Y o) + 0,

=1

(16)

def

where 207 (t)) & 0D (mT/2;1;) and ) € nO(mT¢/2).

3.1. Expectation of Matched Filter Outputs

Since matched filter output is sampled once each T¢/2,
difference between the actual delay of i-th user and the
closest sample time is less than or equal to T¢/4. There
is one acquisition timing in every data period. Thus, p-th
correct acquisition timing, denoted by m = m,,, satisfies

lt: + pT —m,Tc/2| < Tc/4. (17)
Let s; = t; + pT — m;TC/Z, then we have {—‘fr’l) ) =
P

ED(pT; s;). Hence,

Tcl/4

) .
Banlél @l = [ Be[e0ris]as  as)
-Tc/4

where T; is a random variable for #; which is uniformly
distributed in (17). From (4) and equation &9 (pT; —s;) =
EO((p+ DT; T - s;), we have

EpTss) = dPpi(T —Isi) + iy pullsid),  (19)
where + takes + for s; > 0 and — for s; < 0. Averaging (19)

over s; € [-T¢/4 : T¢/4] and substituting (10) gives

2 (7T+ DN -2
dy G+ON -2,

Exr, [‘ff:;; @] = X

+(d), +d), )—Nf1 Tc
16

p+l (20)
which approaches to d\) ZAT when N — co.

Variance of self-interference with respect to codes cor-
responding to the correct acquisition timing is relatively
small, that is, from (15) and letting {5 = 0,

i Tc /4
Varyr, [ﬁf}n’;(n)] =& [, 0 - s,
= (1 =), (21)

Thus, this paper regards variance of self-interference at

m = m* to be zero. On the other hand, for m # m"* it

is regarded as 2 1”}’ , i.e., the same value as variance of

MALI. We can verify this by averaging (15) over the time
delay.

We regard expectation of auto-correlation function is
zero for m # m*, though it is not exactly zero because of the
Markovity of SS codes. This approximation makes calcula-
tions of conditional probability less accurate. However, the
complexity of the acquisition system decreases since the re-
ceiver’s task is reduced to classify distribution of matched
filter output into only two types; fon and fof, respectively
corresponding to presence and absence of synchronization.

Concerning i-th user’s signal, two cases are considered:
i) data is modulated and ii) data is not modulated. In the
former case, D is introduced to represent a random vari-
able for d, where Pr(d}) = +1) = Pr(d}) = —1) = 1/2. In
the latter case, dg) = +1 with probability 1. Such a data se-
quence is called training sequence. Since code acquisition
is performed in advance of data transmission, utilization of
training sequence is possible and, as a consequence, acqui-
sition process is accelerated. This paper investigates the
training sequence case.

2
Let N(zlu, 0°) = \/—U exp(
tribution function with mean p and variance o>. Then
Jon(¥) = N(xltton, 075,) and forr(x) = N(xl0,02%) when

BAVN, oo = J - ogpar + No/2,

2 = (T = Doy + N0/2 and 02, = 314l

—(x u)

) denote normal dis-

N — oo, where o, =

-
3.2. A Posteriori Probability Based Threshold Rule

Suppose first M matched filter outputs are observed,
where superscript (7) is omitted for 2 for simplicity. Then
the conditional (or, a posteriori) probability that n-th sam-
pletime (n = 0,1,...,2N — 1) is correct acquisition timing
is given by

l_[mmodN 0 8(Zm)
2N ! l_[mmodN fg(Zm)

Prob(nl{z,.}2 ) (22)

where g(x) = fon(x)/ forr(x). If Prob(nl{zs}}’y') exceeds
threshold p,, (e.g. 0.95 or 0.99), we declare that t = nT¢/2
is the correct acquisition timing. Otherwise a posteriori
probability is updated using the next output and process
continues until the threshold is crossed.

Two outputs z,, and z,,+; actually are correlated but we
ignored this correlation and treated it as independent in
(22). In spite of this inaccuracy, the proposed acquisition
method works well, as shown in simulation results.

4. Simulation Results and Conclusions

Numerical simulation is performed using i.i.d. and
Markovian SS codes with N = 63 and threshold p,; = 0.95.
For Markovian codes, 4 = -2 + V3 is employed which
is known as the eigenvalue minimizing variance of MAI.
Note that i.i.d. codes can be regarded as Markovian codes
with 1 = 0.
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Figure 2: Probability of Correct Acquisition v.s. number of
symbols: Spreading factor and number of user are N = 63
and J = 30.

Simulation results shows that code acquisition of Marko-
vian SS codes is faster than i.i.d. codes (Fig. 2). Proba-
bility of correct acquisition using 30 symbols is 0.967 for
Markovian codes, which is inferior to i.i.d.codes (0.980).
This is because we approximate the expectation and vari-
ance of self-interference and assume z,,’s are independent.
However, for both codes, correct acquisition probability is
more than the threshold. Using 6 data periods, about 60%
of correct acquisition is declared for Markov codes, which
is better than i.i.d. codes by 10%. Hence Markovian codes
show superiority in code acquisition performance.
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