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Abstract—Crossover between ballistic motion and nor-and compare them with generalized scaling laws, like ex-
mal diffusion is studied based on the continuous-time ranended self-similarity (ESS) and generalized extended self-
dom walk (CTRW) approach in order to analyze universaimilarity (GESS), [3, 4] which were introduced to describe
properties of strongly correlated motion and the decay pradrbulence at intermediate Reynolds numbers. Miyazaki et
cess of correlation in deterministicflision. There exists al. succeeded in finding such scaling laws related to mod-
a characteristic time scate For the time regiort < 7, ulational intermittency[5, 6, 7, 8] and to supe&fdsion in
ballistic motion is observed, which is followed by normaloscillating convection flows.[9]

diffusion fort > 7. Higher-order moments are analytically These kinds of scaling laws are expected to be widely

obtained using the saddle-point method, and it is foungbserved for various systems exhibiting crossover phenom-

that they obey scaling relations that are reminiscent of e¥na of concern. We will introduce the scaling functipre-

tended self-similarity (ESS) and generalized extended selfted to the moments of position and the curved time scale

similarity (GESS) found in turbulent systems. f characterizing the crossover between strongly correlated
motion such as anomaloudidision or ballistic motion and
uncorrelated normal fusion.

Here, we derive the scaling functianand the curved

Diffusion processes are commonly observed in ma,ﬂme scala for a simple system where a particle moves with

fields in physics, chemistry and biology, and have beeWniform velocity on the line for a time which is distributed
studied both theoretically and experimentally. Normal difccording to an exponential probability density function
fusion such as Brownian motion is characterized by med PF)#(t) = exp(-t/7)/7, and randomly changes its direc-
square displacement (MSD) that increases linearly witfion- The corresponding MSD shows a crossover between
time, (r2)(t) « t. Other types of dfusion processes have ballistic motion ¢ < 1) and normal dfusion { > 7).

also been studied, and are characterized by the tempofQ" this purpose, we use a continuous-time random walk
evolution of the MSD asr2)(t) o« t with 0 < ¢ < 1 (CTRW)[10, 11] velocity model, which describes motion

(anomalous subffusion), with 1< ¢ < 2 (anomalous su- cpnsi;ting of uniform motion and instantaneous changes of

perdifusion), and with’ = 2 (ballistic difusion). The last direction.

case, ballistic motion, is observed in theéfdsion caused ~ This paper is organized as follows. $2, we describe

by thermal noise for the time scale shorter than the medhe implementation of the CTRW velocity model. We

free time. derive the scaling properties characterizing crossover be-
Based on the viewpoint of deterministididision[1], dif-  tween ballistic motion and normalfilision in§3. The final

fusion is caused by chaotic dynamics in a dynamical sy§ection is devoted to concluding remarks.

tem. The invariant sets relevant to the chaotic dynamics

in the phase space ffer bifurcations when the control pa-

rameter is changed. Long correlations occur in the vicin2. Implementation of the CTRW velocity model

ity of the bifurcation point, leading to anomaloustdsion.

There exists a characteristic timmewhich corresponds to  Following the description of Zumofen and Klafter[12],

the mean free time in the case of théfdsion caused by we review the general framework of the CTRW theory. In

thermal noise. Unlike the mean free time, this charactethe CTRW framework the random-walk process is entirely

istic time r may diverge in the vicinity of the bifurcation specified byy(r,t), the probability density to move a dis-

point. Tangent bifurcation is an example. Thus, itis importancer in timet in a single motion eventy(r,t) can be

tant to characterize crossover phenomena between anoraher the decoupled cagdr,t) = ¢(t)A(r), known as the

lous and normal diusion observed respectively for  jump modelor the coupled casg(r,t) = p(r|t)e(t), called

and fort > 7 by use of various scaling properties, as ighe velocity modelwhereA(r) is the PDF to move a dis-

also the case for turbulent phenomena [2]. We attemptédncer in a single motion event ang{r|t) is the conditional

to find scaling laws that hold from the anomalous subdifprobability to move a distanaein timet. Here, we focus

fusion region into the normal ffusion region as a whole, only on the velocity model, and we assume in the follow-

1. Introduction
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ing: Therefore, substituting Egs. (9) and (10) into Eq. (6) and

1 Eq. (7) withm = 1, we obtain the corresponding MSD in
p(rit) = 2 [6(r = VD) +5(r + Vo), @ ihe Laplace spaceé;?)(s), as
v_vhere_the firs_t_and second terms_describe t_he unifor_m mo- 2 (s% +1— (p(s))
tion with positive constant velocity and with negative <r2>(s) = (11)
constant velocity-v. For this modelg(t) is the PDF to go S(1-¢(9)

straight in one direction up to time ‘the flight duration’. |t is also convenient to introduce the following two func-
The probability densityP(r,t) to be at locatiorr at time  tjons

t will be calculated in terms af(r,t). In order to obtain

P(r,t) we define¥(r, t), the probability to pass at location yi(k, ) = @(s+ikv) + p(s—ikv), (12)
at timet in a single motion event?(r, t) is given by w_(k,S) = @(s+ikv) —@(s—ikv), (13)
W) = S [6(r — i) + 5(r + V)] f Tdrer), (@ SOomatwehave
) = Z[6(r = vty +6(r + .
2 t i S ikv v_(k, 9)

Pk, s) = + . (14)
In order to derive recursive expressions fr,t), we kvt @k 2-yi(ks)

considerQ(r, t), the probability to arrive at exactly at time

t and to stop before randomly choosing a new direction. |

respective of which model we choose, the following recur-

sive relation holds:

|§. Crossover between ballistic motion and normal dif-
fusion

We derive the crossover between anomalous ballistic
t motion and normal diusion by using the CTRW velocity

Q(r,t) = fdr’f dt’ Q(r—r’, t—t" )y (r’, t')+5(r)s(t). (3) model. As mentioned in the preceding section, to calculate
0 MSD, firstly we must obtaigp(t). We assume the following

In the Fourier ( — k) and Laplacet(— s) spaces we have PDF
1 t

1 o(t) = —exp--). (15)
T T

1-y(k )’ @) o
wherer corresponds to a characteristic time scale of the
where we introduce for the Fourier gnd Laplace trans- crossover, which is equal to the average flight duration. The
forms the convention that the arguments indicate the spakaplace transform of Eq. (15) is given by
in which the function is defined, e.dJ(k, s) is the Fourier-
Laplace transform of)(r, t). Moreover the probability den- o(s) =

Q. s) =

(16)

sity P(r,t) is related taQ(r, t) by L+rs
’ ’ Substituting Eg. (16) into Egs. (12) and (13), we have
t
P(r,ty= | dr | dt Q(r—r,t—t)¥(' . t). (5 2(1+ 19
0= o [ aro (). (5) wiey - LD )
Finally in the Fourier and Laplace spaces we have vo(s = i _S)Zzik_:/T(kVT)z' (18)
T
Pk, ) = % (6) Therefore, substituting Egs. (17) and (18) into Eq. (6), we
— ¢k s) obtainP(k, s) as
The correspondingr-th moments are given in the Laplace VTS(T+79)
space b 1 1+1s 2——
p y o Pk, s) = v - > (29)
2m 9°"P(k, ) K2 + (_m )
r'me) = —=-- - () v
a@ik)®™ | o

which coincides with the result derived by Zumofen and

~ Some supplements to the above descriptions are M&Rpafter [12]. Equation (11) yields the corresponding MSD
tioned below. The key functiong(r, t), y(k,s) and¥(k.s)  in the Laplace space

are explicitly given by

21\2
() = 5———> (20)
w(r,t) = % [8(r — vt) + 6(r + V)] (1), (8) $(1+79
1 _ . whose inverse Laplace transform yields the following scal-
vke) = Sle(s—ikv) +e(s+ikv)], (9) ing form
_ 11- p(s—ikv) 1-—(s+ikv) ) -t
Yk = STk T seiw |20 AT 21)

356



with the difusion constant

D=1V, (22)
and the scaling function
— 1
o(2=1- > (1-exp22). (23)
We havep(z) ~ zfor z< 1, andp(z) ~ 1 forz>> 1.
From Eq. (7) we have
(r®™(s) = th(2m+ 1)(Tv)2mi v (24)
s |lts(l+79 ) °
For the sake of simplicity, we rescale time as
S>> S (E - 1), (25)
T

which implies that the timeis normalized byr, so that we
have

1 1

(r™(t) = [(2m+ 1)(rv)*mL™ [Ew

] . (26)

For largem, the inverse Laplace transform can be estimate¥fa€ { =

by use of the saddle-point method as[13]

a1

£ [gm}
_ % f:: gStmlogELes)-logs gg - (27)
= ef®)[2rf7(s)] Y2, (28)
- (2e)mg(%n) [t(%n)] ’ #)

where the argument of the exponential functfgrihe sad-
dle points,, the curvedtime scalef, and the additional
functiong are given by

f(s) = st—mlog(s(1+ s))—logs, (30)
t
S*(ts m) = Sk (?n) 5
1 2m 2m
= E[_l+T+ w/l+(T)2], (31)
@ = z¢2, (32)
o2 = 1++2_1 exp(—z+ V1+ 22), (33)
Vit 2
W@ = zZ+1+ V1+7Z . (34)

1+22+ V1+ 2

The saddle poing = s,(t, m) is determined fronf’(s) = 0,
which leads tat — 2 — ;% — 1 = 0. Form > 1, the last

9(2)

14
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Figure 1: The functiomy(2) given by Eq. (34) appearing in
the scaling law of the &-th moment Eq. (35). Note that
this function is nearly constant, except for 1.

g(2) given by Eq. (34) satisfies/2 = g(0) < g(2) < g(c) =

2 forz > 0. We havep(z) x zfor z < 1, and¢(2) ~ 1 for
z> 1, so thaff(z) « 2 for z < 1, andf(2) « zforz> 1.
Using Egs. (26) and (29) and returning to the original time
1), we obtain

0= e

with Np = T(2m+ 1)(2er?v?)™. Figure 2 depictg(2) (solid
line) derived by the saddle-point method. Also plotted is
#(2) (dashed line) given by Eqg. (23) appearing in the scaling
law of the second momenin= 1) Eq. (21) derived exactly
for comparison. Good agreement implies that the results
derived by the saddle-point method for— o hold even

for lower-order moments.

We find that the curved time scaldepends on the order
of the momenm. However, introducing the timg, = mt,
which are the actual time scaled by the inverse of the mo-
ment order, Im, we have the @ and Z-th moments ex-
pressed in terms df{ £ ) as

(39)

T

e = Neg(oo) [((5)] . @0
) = No(5) [(52) @37
From Egs. (36) and (37), we have
2m L/m 2n Ln
-l -l o

which leads to
Nm

N

<r2m>(tm) =

™" . (@0

5[

term can be ignored, so that the saddle point in the CONVeFnoring the time dependencegft), we have
gence domain is given by Eq. (31). As shown in Fig. 1, the

smooth, bounded, and monotonically increasing function

(2™ (tm) o (r2MHMN(t), (40)
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