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Abstract—We propose a single component Markov
chain Monte Carlo (MCMC) method that converges faster
than Gibbs sampler. A basic idea is to change the value
of state variables as frequently as possible. However, just
increasing the changing probability often leads to high re-
jection rate. Therefore, we choose a transition probabil-
ity among a class of distributions that ensure zero rejection
rate. We propose a method for calculating a transition ma-
trix with a large changing probability. The method requires
just slight computation, and we show that the proposed
method converges faster than Gibbs sampler theoretically
for simple cases. For larger size problems, we examine the
performance by synthetic simulation.

1. Introduction

Graphical models have become increasingly popular for
Bayesian inference in various areas of science and engi-
neering. If a graphical model is singly-connected without
any loop, a belief propagation method can be applied to ob-
tain exact statistics such as a posterior mean. However, the
computation time increases combinatorially for multiply-
connected models. Therefore a lot of methods to obtain
approximate values have been proposed.

One approach is based on Markov chain Monte Carlo
(MCMC)[2, 3]. In MCMC, random samples are generated
from a distribution whose limiting distribution is identical
to the posterior, and the posterior mean is approximated by
their average. MCMC approach is considered to be slower
than other methods such as mean field approximation[4].
However, MCMC is still used in various areas of science,
because it can approximate the exact value as precisely as
possible if computation time permits.

In this paper, we focus on the case of single component
MCMC in which the whole random variable is divided into
components and the update is performed sequentially for
each component. Furthermore, we consider specifically the
case of discrete variable, though the basic concept can be
applied to continuous variable cases.

Among single component MCMC methods, Gibbs sam-
pler (heat-bath algorithm) is the most commonly used
method[1]. The proposal distribution of the Gibbs sampler
is identical to the full conditional distribution for the cur-
rent variable. One of the authors showed that the Gibbs
sampler performs best among single component MCMC

methods in a greedy sense from an information geometric
interpretation[5].

However, fast convergence of distribution is not nec-
essarily equivalent to quick convergence of Monte Carlo
integration. Let us consider a simple example. Suppose
we have only one binary (0-1) unit and the target distribu-
tion is 1/2 for both values. The Gibbs sampling is noth-
ing but a coin flipping in this case, and the mean value is
estimated by the frequency of one side of the coin. Al-
though it converges to the true value 1/2, the average of an-
other sequence 01010101 · · · converges much faster. We
extend this idea to more general cases of single component
MCMC for discrete variables.

Intuitively, the basic idea is changing the current state
more often. However, if we increase the probability of
changing a state, a rejection rate will also increase in gen-
eral, which results in the same state. In this paper, we con-
sider a method for finding such a distribution with zero re-
jection rate by just small computation time.

On the acceleration of Gibbs sampler, a lot of contribu-
tions have been proposed. However, most of them focus on
continuous cases, while our approach is efficient in partic-
ular for discrete cases.

2. Single component MCMC

What we want to evaluate is the average of a function
f(X) of a random variable X with respect to some distri-
bution π(X). In Bayesian inference, X is a set of unob-
served variables in graphical models and π(X) is a poste-
rior distribution conditioned by observed variables.

MCMC approximates Eπ [f(X)] by Monte Carlo sim-
ulation, E[f(X)] � (1/T )

∑T
t=0 f(X(t)), where the

random sequence X(0), X(1), . . . , X(T ) is generated by
Markov chain P (X(t + 1) | X(t)), i.e., the current state
X(t + 1) depends only on the previous state X(t). If the
limiting distribution of P (X(t + 1) | X(t)) from any ini-
tial solution is equal to π(X), the Monte Carlo integration
converges to the true value of E[f(X)].

The single component MCMC is a kind of MCMC
in which the random variable X is divided into compo-
nents {X1, . . . , XN}, and the states of the components
are changed one by one as follows: Before the update
of the i-th component at time step t + 1, the current
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state of X is given by {Xi(t), X−i(t)}, where X−i(t)
is defined by X−i(t) = {X1(t + 1), . . . , Xi−1(t +
1), Xi+1(t), . . . , XN(t)}, which is all components of the
current X except Xi(t). Then Xi(t + 1) is generated by
an appropriate Markov chain with the transition probabil-
ity P (Xi(t + 1) | Xi(t), X−i(t)).

Gibbs sampler is a special class of single component
MCMC, in which the transition probability is given by
P (Xi(t + 1) | Xi(t), X−i(t)) = π(Xi | X−i), where
π(Xi | X−i) = π(X)/

∑
X−i

π(X) is the full conditional
probability.

3. Active update scheme

From an information geometrical interpretation, Taka-
batake showed that the Gibbs sampler moves the current
distribution to the closest point of the target distribution
π(X) among all single component MCMC by which π(X)
is stationary. Therefore, the distribution converges quickly
by the Gibbs sampler in a greedy sense. However, it does
not ensure quick convergence of the Monte Carlo integra-
tion.

Note that a new value of a state updated by the Gibbs
sampler is independent of the old value of the state. There-
fore, the state sometimes does not change the value even
when the transition probability is small. That causes slow
convergence of the Gibbs sampler. One way to improve the
performance is increasing the transition probability. How-
ever, it will also make the rejection rate large. To avoid the
increase of the rejection rate, we find a proposal distribu-
tion among a class of distributions which converges to the
full conditional distribution used in the Gibbs sampler.

Here, let us introduce some notational conventions.
Since we focus on the update of only one component, we
omit the subscript for the component X i unless it is nec-
essary. Let Xi be a k valued discrete variable and π =
(π1, . . . , πk) denote the vector of full conditional probabil-
ity of the component, πj = π(Xi = j | X−i = X−i(t)),
where the values of other components X−i are fixed to
X−i(t), and

∑k
j=1 πj = 1. We assume πj > 0 for all

j.
The transition matrix P is a k × k matrix, and the (i, j)

element represents the probability of transition from the
current state i to the next state j. It has to satisfy several
conditions as follows:

1. P is a probability matrix in the sense
∑k

j=1 Pij = 1
for all i, and 0 ≤ Pij ≤ 1 for all i, j, i.e.,

P1� = 1�, O ≤ P ≤ 1�1, (1)

where 1 = (1, . . . , 1) and O is a zero matrix.

2. The target distribution π is stationary by P ,

πP = π, (2)

3. The chain defined by P is irreducible, i.e. for all i, j,
there exists t > 0 that satisfies (P t)ij > 0.

Let us consider the transition matrix of the Gibbs sam-
pler, P G = (π�, · · · , π�)� where all rows are identical
because the next state is independent of the current state.
This matrix satisfies all the conditions described above.

3.1. Linear programming

First of all, we explain a probably optimal but compu-
tationally intensive approach. The problem can be formu-
lated by the LP problem, minP

∑k
i=1 Pii, subject to the

constraints (1) and (2). Since the irreducibility condition
cannot be written as a linear constraint, we need to check
whether the LP solution satisfies the irreducibility.

3.2. Diagonal element reduction

Let us consider a class of transition matrices in the form

PD = (1 + λ)PG − λIk,

which reduces the diagonal elements of P G by λ. π is
stationary by P D, and we would like to take as large λ as
possible.

Theorem 1 PD satisfies all the conditions of transition
matrix by which the target distribution π is stationary,
when λ is taken appropriately. The maximal value of such
λ is given by λ = mini πi/(1 − mini πi).

Although P D can be obtained by very small computa-
tion, the effect is slight if there is a small πi.

3.3. Block matrix partition

In this subsection, we introduce another class of tran-
sition matrices based on a matrix partition. Suppose K1

and K2 are any partition of the indices K = {1, . . . , k}
(K1 ∪ K2 = K, K1 ∩ K2 = ∅), first let us consider the
matrix in the form of

PB(K) =
(

a1P
G(K1, K1) b1P

G(K1, K2)
b2P

G(K2, K1) a2P
G(K2, K2)

)
,

where P G(Ki, Kj) is defined by the submatrix of P G with
rows of Ki and columns of Kj .

In particular, if a1 = a2 = b1 = b2 = 1, P B(K) is
identical to P G. Our aim is to find a solution such that a1

and a2 are small.

Theorem 2 PB(K) satisfies all the conditions of tran-
sition matrix by which the target distribution is station-
ary, when values of a1, a2, b1, b2 are taken appropriately.
a1 and a2 are minimized simultaneously, when b1 =
b2 = b = 1/max{π(K1), π(K2)}, where π(K1) =∑

i∈K1
πi, π(K2) =

∑
i∈K2

πi, and they are given by
a1 = 1 − bπ(K1)/π(K2), a2 = 1 − bπ(K2)/π(K1). Fur-
thermore, either a1 or a2 is equal to zero.
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We apply this partition procedure recursively for a
nonzero diagonal block. Here we have two kinds of free-
doms: One is the depth of recursion, and the other is the
partition of indices at each step. If the transition matrix is
calculated off-line, the recursion can be performed up to
the deepest level and each partition may also be optimized
by some combinatorial method. However, if we have to
calculate it on-line, the recursion should be just one or two
levels and the partition be performed in a deterministic way.
In addition to the computation issue, we need to calculate
only the row of P B, not all the elements, particularly in the
case of on-line.

3.4. A special case: existence of πi ≥ 1/2

A lot of numerical experiments of LP suggests that all
diagonal elements can be zero except for the case that
πi ≥ 1/2 for some i. In this special case, we can take
the following transition matrix P A, PA

ii = 2− 1/πi, P
A
ij =

πj/πi(j �= i), PA
ki = 1(k �= i), P A

kj = 0(k, j �= i). All
components except the i-th row and the i-th column are
zero. The computation cost for P A is very small, and in
fact, if the current state is not i, random number generation
is not necessary and we just move the state to i.

3.5. Binary case

The case of binary valued variable is special, because
all the above transition matrices coincide, P LP = PD =
PB = PA.

4. Analysis of convergence

In this section, we analyze some simple cases theoreti-
cally, and compare the convergence of Monte Carlo inte-
gration of the proposed method with the Gibbs sampler.

4.1. Monte Carlo integration

Here, we evaluate a Monte Carlo integration of the ran-
dom variable Xi, ri(T ) = (1/T )

∑T
t=1 Xi(t), where the

initial starting point Xi(0) at t = 0 is discarded.
The statistics ri(T ) is a estimator of the posterior mean

µi, and it is the most basic but important statistics in
Bayesian inference.

Let us define the estimation bias by mi(T ) = E[ri(T )−
µi], where the expectation is taken with respect to all Monte
Carlo samples. Good estimator does not minimize only the
amount of the estimation bias, but the squared error defined
by vi(T ) = E[(ri(T ) − µi)2].

Let mG
i (T ) and vG

i (T ) be the values for the Gibbs sam-
pler. In this section, we analyze the case of binary variable
in which all the proposed methods coincide as described in
sec. 3.5, hence we write the values of the proposed method
by mA

i (T ) and vA
i (T ).

4.2. One binary unit

In this subsection, we consider the case that there is only
one unobserved unit X1 that takes binary values 0 and 1.
The posterior distribution for X1 is parametrized just π1 =
P (X1 = 1 | X−1). Without loss of generality, we assume
π1 ≤ 1/2 and the initial condition is Xi(0) = 0. The true
value of posterior mean is given by µ1 = π1.

Theorem 3 In the case of a single binary unit, the bias
of the Monte Carlo integration is asymptotically given by
mG

1 = 0, for the Gibbs sampler, and mA
1 � π1

2/T, for the
proposed method, where � represents the same 1/T order.

The variance values are given by vG
1 � π1/T, vA

1 �
π1(1 − 2π1)(1 − π1)/T respectively. When π1 is close to
1/2, the 1/T order term in vA

1 vanishes.

From this theorem, we conclude that the proposed
method converges quickly in the sense of squared error par-
ticularly when π1 � 1/2, though it has a larger bias than
the Gibbs sampler.

4.3. Two binary units (XOR type)

In this section, we investigate the case of two binary
units. Since there are three free parameters even for the
two binary units, it makes much more difficult to analyze
in general. Through preliminary numerical simulations, we
observed that the difference between the Gibbs sampler and
the proposed method is small in the case of the following
XOR (exclusive or) type problem. Thus, we analyze this
one parameter problem.

p-XOR problem: Suppose we have two random variables
X1 and X2 and let πij be the joint posterior πij = P (X1 =
i, Xj = j | X−i ∩ X−j). Then the p-XOR problem is
defined by π00 = π11 = p/2, π01 = π10 = (1 − p)/2,
where p ≤ 1/2 is a parameter. For the sake of convenience,
we assume the initial state is X1 = X2 = 0 and the single
component MCMC is performed in the sequence of X1,
X2. This problem is difficult for MCMC approach because
the chain has to pass a state of a small probability.

Theorem 4 In the case of p-XOR problem, the bias
of X1 of the Gibbs and the proposed method are
given by mG

1 � −(1 − 2p)2/{8p(1 − p)}, mA
1 �

(1 − 2p + 2p2)/{8p(1 − p)}, respectively, and the vari-
ance is vG

1 � (3 − 8p + 6p2)/{8p(1 − p)}, vA
1 �

(1 − 2p)(3− 4p + 2p2)/{8p(1− p)}.

This theorem shows qualitatively similar relation to Theo-
rem 3 between the Gibbs sampler and the proposed method.
The proposed method has always smaller variance, and the
difference is clear as p is close to 1/2.

Note on MFA Mean field approximation (MFA) is known
as a promising approach for Bayesian inference. It con-
verges very quickly and perform effectively in particular
when the degree of multiple connection is small such as
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error correcting codes. However, they do not produce ex-
act solutions in general and perform poorly for strongly
multiply-connected models. For the p-XOR problem, if p is
less than some critical value pc, the MFA does not converge
to the true value. Therefore, the proposed method improves
Gibbs sampler for a large p(� 1/2), and it avoids the phase
transition in the MFA for a small p(≤ pc).

5. Experiments

In this section, we examine the performance of the
proposed method for a larger size of problem. We
consider the Boltzmann distribution, P (X1, . . . , XN ) =
(1/Z) exp(

∑
i<j JijXiXj +

∑
i θiXi), where Xi = ±1.

In the simulation, we prepared N = 100 units and gen-
erated Jij and θi randomly from the Gaussian distribution
N [0, 1/N ]. In order to obtain the ‘true value’ of posterior
mean, we calculated Monte Carlo integration by 500000
steps of the Gibbs sampler where the first 10000 samples
are discarded as burn-in.

5.1. Binary case

Here we compare the Gibbs sampler with the proposed
method in the case that each binary variable represents
each component. For a fixed configuration of J ij and θi,
MCMC is performed for 100 different sets of random num-
bers. The result is shown in Fig. 1. For the MCMC,
we discarded the first 100 samples as burn-in, and cal-
culated the average of successive 1000 samples. From
the figure, we observe that the error curves are approx-
imately linear and parallel in this log-log plot. There-
fore, we introduce the performance index for comparison,
ρ(G, A) = exp((βG − βA)/ max{αG, αA}), where α, β
are parameters of linear fitting log MSE = β − α log t.
ρ(G, A) approximately evaluates the ratio of iterations that
the Gibbs sampler requires to reach the same accuracy as
the proposed method. Thus, for example, if ρ(G, A) = 2,
the proposed method converges about two times faster than
the Gibbs sampler. We calculated ρ(G, A) for 10 differ-
ent configurations of Jij , θi, and it distributes 2.8 ± 0.8
(mean±std.dev.), which is larger than 1.0 with a signifi-
cance <1%. The difference of computation time is negligi-
ble less than 1% of time except the calculation of the transi-
tion probability. As described earlier, the proposed method
is sometimes faster because the random number generation
is not always necessary.

In the figure, the results of two kinds of the MFA (naive
MFA and TAP MFA) are also shown up to 100 iterations.
From the simulation, however, they behave in a similar
way: first they approach to the true value, then they go
apart.

5.2. Grouping

In order to investigate the performance when the variable
takes more than two values, we make a group with two
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Figure 1: Comparison of the Gibbs sampler, the proposed
method, and mean field approximations in binary case.
Solid line: Gibbs, Dashed: Proposed, Dot-dashed: Naive
MFA, Dotted: TAP MFA. Curves and error bars for MCMC
methods represent the mean and standard deviation for 100
runs.

variables, hence each group component takes 4 values from
(−1,−1) to (1,1).

We compared the following three MCMC methods for
the group components: the Gibbs sampler P G, the diagonal
element reduction P D and the block matrix partition P B of
depth two recursion with a fixed partition.

The performance index for 10 different configurations
are distributed as ρ(G, D) = 1.1±0.2 (significant (<5%)),
ρ(G, B) = 1.8 ± 0.3 (significant (<1%)).

The difference of computation time is also small in this
case (less than 5% of time), which does not affect the sta-
tistical significance.
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