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Abstract– Design equations for satisfying optimum
conditions of Class E amplifier with a nonlinear shunt
capacitance with a grading coefficient of 0.5 at any duty
cycle are derived. By exploiting sub-optimum class E
operation, various amplifier parameters such as input
voltage, operating frequency, output power, and load
resistance can be set as design specifications. An example
of a design procedure of the class E amplifier is given.
The theoretical results were verified with Pspice
simulation using SPICE MOSFET model Level 3.

1. Introduction

It is well known that the output capacitance of a
MOSFET transistor is a nonlinear function of the drain-to-
source voltage. The shunt capacitance of the class E
amplifier consists of the nonlinear transistor output
capacitance. Especially at very high operating frequencies,
whole of the shunt capacitance consists of the transistor
output capacitance. However, most analyses of class E
amplifier have been done with linear capacitance.

An analysis of the class E amplifier with a nonlinear
shunt capacitance of grading coefficient 0.5 was presented
for the first time by Chudobiak for optimum operation at
the duty cycle D = 0.5 [4]. This analysis was done only
for the optimum operation at the duty cycle of D = 0.5.
Authors have extended the Chudobiak analysis to sub-
optimum operation and compared his results with linear
shunt capacitance, subsequently. However, the analysis
for the optimum operation at any duty cycle has not been
done yet.

In this paper, design equations for the optimum
operation at any duty cycle are derived for a class E
amplifier with a nonlinear shunt capacitance of grading
coefficient 0.5. In this analysis, expressions for all
elements, peak switch voltage, peak switch currents, and
output power capability are derived. A class E amplifier
circuit was designed and its operation was verified with
PSpice using Level 3 MOSFET model.

2. Voltage and Current Waveforms of the Class E
Amplifier with Nonlinear Capacitance

The circuit analyzed in this paper is a class E amplifier
shown in Fig. 1. The shunt capacitance of the amplifier
consists only of the MOSFET output capacitance. The

derivations of design equations are carried out under the
following assumptions:

1) The inductance of the choke coil RFCL  is large
enough to neglect its current ripple.

2) The internal resistance of the choke coil is zero;
therefore, the DC voltage drop across the choke is
zero.

3) The loaded quality factor Q  of the output
resonance circuit is high enough so that the output
current can be considered a sine wave.

4) The load resistance includes parasitic resistances
of the series resonance circuit, i.e., the resonance
circuit is considered to be a pure reactance.

5) The MOSFET on-resistance transistor is zero.
6) The MOSFET turns on and off instantly.
7) The shunt capacitance 1C  is entirely comprised of

the MOSFET output capacitance.
8) The grading coefficient of the MOSFET output

capacitance is 0.5. The shunt capacitance is
described by

bi

S

j

V
v

C
C

+
=

1

0
1 (1)

where 0jC  is the shunt capacitance at the drain to switch

voltage 0=Sv  and biV  is the built-in potential of the
MOSFET body diode.

The transistor is OFF for Dπθ 20 <≤ , and ON for
πθπ 22 <≤D . While the transistor is OFF, the current

through the shunt capacitance is
( ) ( )φθθ +−= sinmDDC IIi (2)

where DDI  is the dc input current, mI  is the output
current amplitude, and tωθ = . The switch voltage Sv  is
the integral of the shunt capacitor current Ci  given by

θd
dvCi S

C 1= . (3)

 Integrating both side of this equation with respect of θ
gives

θω didvC CS ∫∫ =1 . (4)

Substituting 1C  given by (1),
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Solving this equation, the switch voltage Sv  can be
derived as
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3. Circuit Parameters for Optimum Operation at Any

Duty Cycle

For the optimum operation,
( ) 02 =DiC π (7)

and
( ) 02 =DvS π (8)

are satisfied. Substitution of (7) into (2) yields

DDD
DDD
πππ

πππφ
222

1222
cossin

cossinarctan
−

−+
= . (9)

Fig. 3 shows φ  as a function of the duty cycle D . φ
decreases from positive to negative values as D  increases.
Substituting (8) into (6),

( )φπππ += DDIDI mDD sinsin . (10)
Since the power loss in the circuit is zero, the output
power is equal to the input power,

2

2RIVIP m
DDDDo == . (11)

Substituting (10) into (11), one can obtain the output
current amplitude mI  and the output power oP  for the
optimum operation at any duty cycle.
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Fig. 4 shows normalized output current amplitude

DDm VRI /  and normalized output power 2
DDo VRP /  as a

function of the duty cycle D . The normalized output
current amplitude DDm VRI /  decreases from 2 to zero as

D  increases. The normalized output power 2
DDo VRP /

also decreases from 2 to zero as D  increases.
Fig. 5 shows RCj0ω  as a function of the duty cycle D

and biDD VV / . RCj0ω  for the optimum operation can be
obtained by substituting (9) into
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RCj0ω  reaches the maximum value for 50.=D . It

increases with an increase in biDD VV / . The phase angle

1φ  of the voltage 1v , i.e., the phase of the sum of the
output voltage and the fundamental component of the
voltage across the reactance X , is derived as
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Fig. 6 shows RX /  as a function of the duty cycle D  and

biDD VV / . RX /  can be obtained by substituting (9) into
(15). RX /  increases with an increase in the duty cycle
D , but it does not change significantly with a change in

biDD VV / . Fig. 7 shows normalized peak switch voltage

DDSM VV /  versus duty cycle D and biDD VV / .

DDSM VV /  increases from zero to a positive value as the
duty cycle D is increased from 1 to zero. Fig. 8 shows
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power output capability pc  versus duty cycle D and

biDD VV / . pc  is obtained as

SMSM
p VI

Pc 0= . (16)

where oP  is the output power of the optimum operation,

SMI  is the peak switch current for the optimum operation,
which is obtained by substituting (12) into (2), and SMV
is the peak switch voltage for the optimum operation,
which is obtained as ( )1θSv  in which 1θ  is obtained from
(6). pc  is maximum when 50.=D . pc  does not change

much with a change in biDD VV /  when 5>biDD VV / .

4. Simulation Results

The example circuit was simulated with PSpice. The
circuit parameters were V 10=DDV , H 100 µ=RFCL ,

nF 779.=C , H 183 µ.=L , Ω=  2R . The operating
frequency was 1 MHz. The duty cycle was 0.6. The
SPICE MOSFET MODEL Level 3 was used for the
MOSFET. In the SPICE MOSFET model, the drain-
source capacitance is expressed as [4]

MJ1

PB
1

CBD







 +

=
Sv

C , (65)

where CBD is the zero-bias bulk-junction capacitance,
which is the same as 0jC , PB is the bulk junction

potential which is the same as biV , and MJ is the bulk
bottom grading coefficient which is 0.5 in this example. In
accordance with the calculations, we set CBD = 65 nF, PB
= 0.7 V, and MJ = 0.5.
   The simulated waveforms of switch voltage Sv  and the
output voltage ov  are shown in Fig. 9. The peak switch
voltage SMV  was 32.5 V (36 V in theory). The output
voltage amplitude mV  was 6.35 V (7.66 V in theory). In
our design, the MOSFET on-resistance and the gate-drain
capacitance were ignored. The existence of these parasitic
components may cause errors.
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Fig. 2. Normalized output current amplitude ImR/VDD,
normalized output power PoR/VDD

2, and normalized
shunt capacitance current at switch turning-on
iC(π)R/VDD as functions ofφ .
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Fig. 9. Simulated waveforms of the switch voltage
Sv  and the output voltage ov .
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