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Abstract—Different bifurcation phenomena are
studied for a Boost Power Factor correction (PFC) cir-
cuit under three different control strategies. Fixed Fre-
quency Averaged Current Control (FFACC), Variable
Frequency Averaged Current Control (VFACC) and
Fixed Frequency Averaged Current Control (FFACC)
are used. A new bifurcation phenomenon called slow
scale instability at the line frequency is discovered and
analyzed by using nonlinear averaged modeling ap-
proach. Other kinds of bifurcation like the fast scale
instability at both the switching and the line frequency
are also possible. Some guidelines for an optimized sta-
ble design and a power factor close to one are outlined.

1. Introduction

The quality of the current absorbed from the util-
ity line by electronic equipments is attracting many
researchers over the world [1, 3]. Many efforts were
devoted to improve the power factor of standard elec-
tronic loads by using Power Factor Correction (PFC)
circuits. These systems must draw a sinusoidal input
current from the line source. In order to do it a con-
trol circuit should shape the input current to follow
as close as possible a suitable sinusoidal current refer-
ence. The most popular circuit used for this purpose is
the well known boost Power Electronic (PE) converter
with current mode control. PE circuits are nonlinear
systems due to the switching action and feedback loop.
Recently a great variety of complex nonlinear behav-
iors are shown to be possible in even simple PE circuits
like buck, boost and buck-boost DC-DC converters [2].
Nonlinear analysis can be extended to other more com-
plex circuits like PFC circuits. These circuit are more
complex in the sense that their dynamics are char-
acterized naturally by two different frequencies and
therefore by two different scales of time. Many works
are devoted to the characterization of the nonlinear
behavior of boost PFC circuit and different kinds of
instability phenomena were detected. In [3], period
doubling phenomena is observed at the line frequency

which was called slow scale instability while in [4] the
same behavior is observed at the switching frequency
which was called fast scale instability. Theoretically,
other kinds of instability are possible like Hopf bifur-
cation at the line frequency and Hopf bifurcation at
the switching frequency. In practice, the switching
frequency is much greater than the line frequency in
such a way that Hopf bifurcation at the line frequency
is slow scale instability for both the switching and line
frequency while Hopf bifurcation at the switching fre-
quency is a slow scale instability at the switching fre-
quency but it can be fast scale instability at the line
frequency. All these instabilities depend the value of
parameters used. Traditionally, there are many con-
trol strategies to control these systems. For the sake
of brevity we will apply three different controllers to
the system and their dynamics will be characterized
by using nonlinear averaged and discrete time model.
The controllers studied in this work are:

1. Fixed Frequency Peak Current Control (FFPCC)

2. Variable Frequency Average Current Control
(VFACC) or Hysteretic Control (HC)
Control

3. Fixed Frequency Average Current

(FFACC)

Figure 1 shows the block diagrams for each of the
controllers used in this paper. The control objectives
in the PFC circuit are to guarantee that the inductor
current be in phase with the input voltage in order to
ensure a power factor close to one and to drive the out-
put voltage towards a desired constant level. As the
power stage circuit is a non minimum phase system
when the capacitor voltage is the output variable, dif-
ferent instability phenomena can occurs in this system.
Theoretically, as the system has two forcing periods,
bifurcation phenomena can occur at different scale of
time. The present paper deals with studying these bi-
furcation phenomena in a boost PFC circuit under the
three different controllers mentioned previously. These
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Figure 1: Block diagrams of (a) FFPCC, (b) VFACC and
(¢) FFACC
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Figure 2: Block diagram of a boost PFC circuit

phenomena are discovered first by simulating the sys-
tem from its exact circuit diagram and then by using
its large signal nonlinear averaged model. Some guide-
lines for an optimized design and a high power factor
are outlined. Traditionally , it was assumed that the
output capacitor is sufficiently large in such a way that
the output voltage is constant. The system is then lin-
earized near an operating point and the stability of the
system is studied by using linear techniques. Instead,
in this paper, we will use a nonlinear model of the sys-
tem. We will show that a very large capacitor can give
rise to undesired bifurcation phenomena.

2. Slow Scale Instability at the Line Frequency
from the Circuit Diagram

A schematic diagram of a PFC boost AC-DC con-
verter is shown in Fig. 2. The circuit is designed in
order to give periodic waveforms of both output ca-
pacitor voltage and inductor current. There are two
periods that characterize the dynamics of the system,

the switching period T and the line period T,,. Typical
waveforms of the state variables and the rectified input
voltage are shown in Fig. 3. The value of the circuit
parameters used in this figure are: amplitude of the in-
put voltage Vi, = 220v/2 V, line frequency f = 60 Hz,
desired averaged output voltage v, = Vier = 500 V,
output capacitor C' = 10 mF, load resistance R = 100
2, inductance of the inductor I = 5 mH. The con-
troller used is VFACC with the value of the PI con-
troller parameters of the voltage loop are: gain coef-
ficient of the PI controller k&1 = 0.001 and its time
constant 7, = 0.001 s. The hysteresis width is h = 1.
In this paper slow scale instability means Hopf bifur-
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Figure 3: Typical waveforms in normal operation of a PFC
boost converter

cation and the term ‘at the line frequency’ means that
after Hopf bifurcation takes place a frequency less than
the line frequency appears in the dynamics of the sys-
tem and the attractor is a torus 7. The torus is
tri-dimensional because the dynamical behavior of the
system contains three different frequency: the switch-
ing frequency, the line frequency and a lower frequency
which appears after Hopf bifurcation takes place. Fig-
ure 4-a shows the state variables of the PFC boost
converter controlled by a VFACC strategy showing a
slow scale instability at the line frequency. The same
behavior is shown in Fig. 4-b for a FFACC system.
Note the value of the capacitor voltage is very large.
In fact, this is the is main cause of the slow scale in-
stability at the line frequency in this system.

3. Fast Scale Instability at the Line Frequency
from the Circuit Diagram

Fast scale instability means period doubling bifur-
cation and the term ‘at the line frequency’ means that
after this bifurcation takes place the period of the sys-
tem is twice the period of the rectified line voltage.
Figure 5-a shows the state variables of the PFC boost
converter controlled by a FFPCC strategy showing a
fast scale instability at the line frequency. The same
behavior is shown in Fig. 5-b for a VFACC system.
FFACC system can present the same behavior ant it
is not shown here for space limitation.
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Figure 4: Typical waveforms showing slow scale instability
at the line frequency (a) VFACC with control parameters
k1 =0.00012 and 7, = 0.0001 s, (b) FFAPCC with control
parameters k1 = 0.00012 and 71 = 0.0001 s, ks =4, 70 =
0.001 s

4, Fast Scale Instability at the Switching Fre-
quency from the Circuit Diagram

A very common and well known bifurcation phe-
nomenon in power electronic DC-DC converters is the
subharmonic instability or period doubling bifurcation
at the switching frequency. In an AC-DC power fac-
tor circuit, the line voltage is assumed to vary very
slowly with respect to the clock signal in such a way
that both reference signal and input voltage can be
considered constant during a switching cycle. Subhar-
monic instability or the so called fast scale instability
at the switching frequency is also possible in this case.
This phenomenon was first discovered in [4]. Figure
6-a shows the state variables of the PFC boost con-
verter controlled by a FFPCC strategy showing a fast
scale instability at the switching frequency. The same
behavior is shown in Fig. 6-b for a FFACC system. It
should be noted that this behavior is not detected in
the FFACC system.
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Figure 5: Typical waveforms showing fast scale instability
at the line frequency (a) FFPCC with control parameters
k1 = 0.00101 and 7n = 0.001 s, Switching frequency 20
kHz and amplitude of the ramp signal 0.4 A, (b) VFACC
with control parameters k1 = 0.00101 and 71 = 0.001 s and
hysteresis width h = 2 A. The capacitance of the capacitor
is 1 mF.

5. Bifurcation Phenomena Obtained from the
Averaged Model

5.1. Slow scale instability at the line frequency
for the VFACC and FFACC system

Figure 7 shows the waveforms of the averaged state
variables showing a fast scale instability at the line
frequency for the VFACC and FFACC cases. Com-
paring with Fig. 4, it can be observed that, there is a
good concordance between the results obtained from
the averaged model and those obtained from the exact
switched circuit diagram.

5.2. Fast scale instability at the line frequency
for the VFACC and FFACC system

The fast scale instability at the line frequency like
that studied in [3] can be detected by using the same
model. Figure 8 shows the waveforms of the aver-
aged state variables showing a fast scale instability at
the line frequency for the VFACC and FFPCC cases.
Comparing with Fig. 5, it can be observed again, that
the results match well with those obtained from the
switched model. However we can see that the fast
scale instability at the switching frequency can not be
detected by using the averaged model. This requires
a discrete time modeling approach.
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Figure 6: Typical waveforms showing fast scale instability
at the switching frequency (a) FFPCC with control param-
eters k; = 0.001 and 71 = 0.001 s, amplitude of the ramp
signal 1 A, capacitor voltage C' = 10 mF and the remaining
parameters as before, (b) FFACC with control parameters
k1 = 0.001 and 7, = 0.001 s, ks = 1, 7o = 0.001 s, ampli-
tude of the ramp signal 1 A, capacitor voltage C = 10 mF
and the remaining parameters as before.

6. Analysis of Fast Scale Instability at the
Switching Frequency

A discrete-time modeling approach most commonly
comes from regular sampling of the state variables of
the continuous-time description. Because the majority
of power circuits operate cyclically, this model is the
more accurate one in predicting the different kinds of
instabilities of theses systems. As discrete-time model-
ing approach is a natural way to represent the periodic
behavior of PE converters, this approach does not as-
sume the approximations taken in averaged modeling
approach. To build-up the discrete-time model of a
PE circuit, we consider the operation of the system
within the nth cycle. For PE circuits, the system con-
figuration during each switching sub-interval is linear
and closed form expressions for the solutions are avail-
able. These can be cascaded at the switching instants
and the map P which relates two successive samples
of the state variable is obtained. For a PFC circuit,
there are two kinds of discrete time models, one de-
scribing the dynamical behavior of the system along
the switching cycle and the other one describing the
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Figure 7: Typical waveforms showing slow scale instability
at the line frequency obtained form the averaged model, (a)
VFACC, (b) FFACC. The parameter used are the same as
in Fig. 4

dynamics along the line cycle. In this section we study
the local dynamics during the switching cycle and in a
furfur work we will present results by using the global
second order Poincaré map. In continuous conduction
mode there are two and only two configurations during
a switching cycle. The duration of this cycle may be
fixed (FFACC) and (FFPCC) or variable (VFACC).
The system switches cyclically among 2 linear config-
urations during this cycle. In order to simplify the
analysis, we use the fact that the switching frequency
is much higher than the line frequency in such away
that during a switching cycle, the input voltage and
hence the reference current are practically constant. It
should be noted that for FFACC and FFPCC systems
the sampling duration 7, is constant and it is equal
to the period of the clock signal while for VFACC this
duration is variable from cycle to cycle. The mapping
that relates the state variable x,, at the beginning of
an entire cycle to x, 1, those at the end of the same
cycle, can be expressed in the following way:

P:YX=3 (1)
Ip F7 Tptl o= P(xnaTnatn)

For FFACC and FFPCC system and under strobo-
scopic sampling, T, = T is known, where T is the pe-
riod of the clock signal. In this case, only one switch-
ing equation is therefore to be solved to obtain ¢,,. But
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Figure 8: Waveforms of the state variables showing fast
scale instability at the line frequency frequency obtained
from the averaged mode and using the same value of pa-
rameters in Fig. 4, (a) VFACC system, (b) FFPCC system

in the case of VFACC system, T}, is variable and un-
known and two switching equations are to be solved
to obtain t, and 7T;,. The general switching equation
may be written in the following form:

_ | 91 (xnv tﬂ)

(Tp, b, T ) = { oozt Th) } (2)
The map (Eq. (1)) and the constraint (Eq. (2)) de-
fine a generalized discrete-time model for boost PFC
circuit with two configurations and under the different
control strategies. The fixed point of P can be ob-
tained by enforcing the periodicity: z, = z,41 = a*.
Using the expression of P, z* can be expressed in terms
of switching time ¢,, and system transition matrices. In
general, the solution of the equation o(7*,7*) = 0 is
not available in closed form. Therefore a root finding
algorithm should be applied. Once the fixed points are
located, their stability analysis may be carried out by
studying the local behavior of the map P near these
fixed points. The small signal model for the discrete
time model can be written as:

Gnir ~ DP(z)3, (3)

where DP is the Jacobian matrix whose eigenvalues
A; of DP which are also called the characteristic give
the amount of expansion or contraction near the fixed

point z* when the map is once iterated. Therefore they
determine the stability of the fixed point and hence of
its underlying periodic orbit. A sufficient condition for
stability is that all characteristic multipliers lie inside
the unite circle. Evaluating the Jacobian matrix DP
in a fixed point and computing its corresponding char-
acteristic multipliers A; would give us the stability of
its underlying periodic orbit. If DP has all eigenval-
ues within the unit circle, the periodic orbit is stable.
If an eigenvalue crosses the unit circle from inside to
outside, the periodic orbit loses its stability and this is
a sign of a bifurcation. In the remainder of this paper
when we talk about a bifurcation of an orbit, we refer
to nominal orbit which is characterized by 2 switching
instants per switching cycle. In a Boost PFC circuit
the main varying parameter is the input voltage vy
and it can be considered as a bifurcation parameter.
However, this parameter changes from a null value to
a maximum value given by the amplitude of the si-
nusoidal voltage (2204/2 in our case). The parameter
iref 18 also zero when v;, is. It can be shown that for
lref < Vin /R system present no periodic behavior. In
this case the system evolves to an equilibrium point
which depends on the input voltage and which varies
from cycle to cycle. This is the main cause of distor-
tion of the input current that make the power factor
to be far from 1. When i,y > vin/R, the condition
for periodicity is fulfilled. If the nominal periodic or-
bit during one switching cycle is stable, the dynamics
during this cycle is periodic orbit. But it can be sub-
harmonic or even chaotic if the stability of the nominal
periodic orbit is not assured. Traditionally the slope of
the ramp voltage is adjusted in order to ensure stabil-
ity for DC-DC converters in the operating point. The
problem with the PFC boost AC-DC converter is that
this operating point is time varying. However we can
select the value of the slope of the ramp for the worst
operating case which corresponds to a null value of
the input voltage. It can be demonstrated that using
a slope m. = Vref/2L, the stability can be assured
during the whole range of the input voltage.

For the sake of brevity we present the results cor-
responding to the VFACC and FFPCC system only.
The same procedure can be used for the other case.
As it was already mentioned the VFACC system sub-
harmonic oscillation at the switching frequency were
not detect for the set of parameter values used in this
paper. Figure 9-a shows a set of stationary waveforms
of the VFACC system during one switching period ob-
tained from the discrete time approach by varying the
input voltage in the range (60+/2,220v/2). The loca-
tion of the eigenvalues of the Jacobian matrix of the
discrete time model is also shown indicating stability
for whole range of the input voltage. Observe that
in this case the duration of the switching cycle varies.
Figure 9-b shows stationary waveforms of the FFPCC
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system during one switching period by varying the in-
put voltage in the same range. In the case of FFPCC,
we observe that at critical value of the input voltage
one of the eigenvalues is equal to -1 indicating a flip
bifurcation which give rise to subharmonic bifurcation
and chaos. It should be noted that all the results are
obtained assuming a constant value of the input volt-
age during a switching cycle. However, in a real PFC
circuit the input voltage can be supposed to vary lin-
early from cycle to cycle. During the first half period
of the line cycle, the input voltage is increasing and its
slope is positive while it is decreasing during the sec-
ond half period and its slope is negative. A more ac-
curate analysis should take into account the variation
of the slope of the input voltage during one line cycle
and the change of its sign. This explains the asym-
metry observed in the critical points at which the first
bifurcation occurs (see Fig. 6). This was studied and
explained in details in [4]
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Figure 9: Stationary waveforms of the system during one
switching period obtained from the discrete time approach,
(a) VFACC system. Parameter values hysteresis width 1 A,
k1 =0.001 and 7, = 0.001 (b) FFPCC system. Parameter
values The switching period T'= 50 : us, amplitude of the
ramp voltage 1 A and its lower value zero, k1 = 0.001 and
71 = 0.001

Conclusions

Different bifurcation phenomena are detected and
studied for an AC-DC boost PFC circuit under differ-
ent control strategies. Three different controllers are
applied to the system and it was shown that they can
give rise to similar averaged behavior. These are FF-
PCC, FFACC and VFACC. A new bifurcation phe-
nomenon, so called slow scale instability at the line
frequency, is discovered from the circuit diagram and
the analytical large signal averaged model. Slow scale
instability and fast scale at the line frequency is possi-
ble an all cases. Fast scale instability at the switching
frequency is not detected for the VFACC while it is ob-
served in the other two cases. A discrete time approach
is required to detect this instability phenomenon. Such
a discrete time representation of the system dynamics
is presented here in a generalized framework.

It can be claimed that in order to obtain a good
power factor correction the feedback gains should not
be large. But an excessively small value of the feed-
back coefficient of the PI controller and its time con-
stant can give rise to the new detected phenomenon.
In the other hand, stable operation does not means al-
ways a good power factor correction. Some times the
dynamics of the system is periodic but the this factor
is very low. Further study will deal with analyzing the
bifurcation phenomena by using Floquet theory and
harmonic balance. Some phenomena which are not re-
ported her like coexistence of attractors are observed
and it require a more detailed analysis. Experimen-
tal confirmation of some new phenomena is also the
subject of future work.
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