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Abstract—Onc of the most important rescarch ar-
eas in the industry of devices used in power electronics
consists in founding semiconductor devices able to con-
duct high current in the ON phase and simultaneously
to support high voltages when they are in the OFF
phase. New schemes of converters have been developed
to overcome shortcomings in solid-state switching de-
vice ratings so that they can be applied to high-voltage
electrical systems. On the other hand, recently, power
electronic converters are shown to undergo many non-
linear phenomena. In this paper a nonlinear approach
is used to model a multilevel high voltage converter
controlled by constant frequency Pulse Width Modu-
lation (PWM). This model is then used to predict some
instability phenomena that can undergo the system.

1. Introduction

One of the most important research areas in the in-
dustry of devices used in power electronics consists in
founding semiconductor devices able to conduct high
current in the ON phase and simultaneously to sup-
port high voltages when they are in the OFF phase.
New schemes of converters have been developed to
overcome shortcomings in solid-state switching device
ratings so that they can be applied to high-voltage
electrical systems. Applications include such uses as
medium voltage adjustable speed motor drives, dy-
namic voltage restoration, harmonic filtering. Because
distributed power sources are expected to become in-
creasingly prevalent in the near future, the use of such
a converter to control the current and voltage out-
put directly from renewable energy sources will pro-
vide significant advantages because of its fast response
and autonomous control. Additionally, they can also
control the real and reactive power flow [rom a util-
ity connected renewable energy source. On the other
hand, recently, power electronic converters are shown
to undergo many nonlinear phenomena. To study and
to control these phenomena, an appropriate model is
needed. Different Modeling approach can be used.
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Figure 1: Schematic circuit diagram of a multilevel high
voltage DC-DC buck converter

The most traditionally used averaged model was found
to [ail in predicting some bifurcation phenomena like
period doubling and chaotic oscillations. Even for el-
ementary DC-DC converters with two configurations
during one switching cycle, this model is shown to be
inaccurate to predict some kinds of dynamical behav-
ior s [1, 2]. Although low frequency instability in the
form of a Hopf bifurcation can be predicted by the
averaged model, some accuracy is lost as this model
destroys the main non-linearity of the real system by
averaging the state variables during a switching cycle.
An alternative is the discrete-time modeling approach.
The objective of this work is to construct a discrete
time model able to predict accurately the dynamical
behavior ol a high voltage converter under different
control strategies.

2, System Description

The studied converter is shown is Fig. 1. It is based
on the well known buck converter. In order to im-
prove the ability to high voltages, the usual converter
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is modified by using a controlled DC voltage source.
This source is done by a simple capacitor whose charge
and discharge currents are controlled by independent
switches (S and Sy). The analysis can be simplified
by assuming that the voltage across the capacitor is
constant. However, we will use a more accurate anal-
ysis for this circuit. Each pair formed by a switch S;
and a diode D; is activated in a complementary man-
ner in such away that when S; is ON, I); is OFF and
vice versa. In order to obtain optimum waveforms for
the inductor current, a phase shift of 180° is introduced
between the two sawtooth signals. In order to perform
the switch mode operation of the converter, the dura-
tions of the time intervals 7;, (¢ =1...4) must be con-
trolled. Pulse Width Modulation technique plays the
basic control method. The duty cycles of the command
signals u; and uy are varied proportionally to the error
signals to control the output signals in such away that
when the error e; is greater (resp. smaller) than the
ramp voltage vyamp i, the switch is OFF (resp ON). We
will suppose also that there exist a phase shift of 180°
between the two ramp signals signal in order to obtain
optimum waveforms for the inductor current [3]. More
precisely, the signal e; = k; (i, — et )+ ko (ve — Vier) is
compared with a ramp signal vyamp(2) while the signal
eo = ki(ip, — Liet) — kv(vo — Vier) is compared with a
ramp signal vy (t — T/2), where T is the period of
the ramp signal. Figure 2 shows the block diagram of
the controller described.

e 0]

PWM
Modulator

T 1

Figure 2: Block diagram of the controller used for the
multilevel DC-DC buck converter

There are basically three modes of operation for the
system depending on the duty cycle. In this paper we
will focus on the behavior of the system [or duty cycles
between 0.5 and 1. In this case it can be shown that
the nominal periodic behavior of the system is charac-
terized by switching between three configurations dur-
ing four intervals. Figure 3 shows the stationary wave-
forms of the system under stationary normal periodic
operation for a value of duty cycle between 0.5 and 1.
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Figure 3: Operation of the system in stationary normal
periodic behavior for a value of the duty cycle between 0.5
and 1. (a) Time domain waveforms. (b) the orbit in the
state plane.

3. Some Bifurcation Phenomena Observed in
the System

In this section we will present some bifurcation be-
havior of the system under the variation of the in-
ductor current loop gain k; and the reference current
Ier. The illustration of the results are supported by
time domain waveforms, trajectory in the state plan
(ve,ir,), Poincaré sections and bifurcation diagrams.
We begin by plotting a bifurcation diagram for the
system by varying k; in the range (0.5, 1) £2. The pa-
rameter values used are: Input voltage Vi, = 800 V,
capacitance of the capacitor C = 400 pF inductance
of the inductor L = 10 mH, load resistance R = 20 {2,
gain of the voltage loop k, = 0.075. Reference volt-
age Vier = 400 V and reference current I = 24 A.
The bifurcation diagram corresponding to this set of
parameter values is shown in Fig. 4. We can observe
clearly that for some critical value of the current gain,
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Figure 4: Bifurcation diagram of the multilevel high volt-
age DC-DC buck converter taking the current loop gain &;
as a bifurcation parameter

a periodic a orbit undergo a Hopf bifurcation and the
resulting attractor is quasiperiodic (Fig. 5-a). The at-
tractor in the state plane becomes a Torus (Fig. 5-b)
and its Poincaré section is an invariant closed curve
(Fig. 5-¢). A similar behavior is obtained when the
reference current I.or is decreased.

4. Discrete Time Modeling Approach

The accurate study of the complex behavior of a
switched dynamical system can be carried out by con-
structing a nonlinear model which conserves the main
nonlincarity of the system, i.c, the switching action.
Discrete time model is the more accurate in predicting
any kind of instability. In this section we will present
a systematic way to obtain the nonlinear discrete time
model for the multilevel high voltage DC-DC buck con-
verter studied in this paper. Without lose of gener-
ality we will suppose that duty cycle is between 0.5
and 1. In this case, the nominal periodic behavior is
characterized by toggling among three different con-
figurations during four subintervals within a switching
cycle. For each configuration, the system equations
are linear time invariant in the form of ¢ = Az + B,
where z = (if,ve) is the vector of the state vari-
ables. The three different configurations corresponds
to the different states of the switches S; and S5 and
diodes Dy and Dy. When the duty cycle is between 0.5
and 1, the following sequence is obtained for (S, Sg):
(OFF,ON) — (ON,ON) — (ON,OFF) — (ON,ON).
As the diode are complementarily activated to the
switches, the sequence for (D;, Dy) during a switch-
ing cycle is: (ON,OFF) — (OFF,OFF) — (OFF,ON)
— (OFF,OFF). Hereafter, the different configurations
are identified by the state of the switches 57 and Ss.
The different configurations and their equations are:

24 L L L
0022 00225 0.023 00236 0024

Control Signals

-1
0022 00225 0.023 0.0235 0024
Time/s

(=)

5

Inductor Current i, .
[
o
o

=]
=
=]

o
2
>

s

¥
=
i

<]
=
o

1
=y

L 1 L L L
394 39 398 400 402 404 406
Capacitor Voltage v,

(b)

2645

<]
&

Sampled Inductor Current iLfA
&
n

]
o
.,

45 L L L L L L L
396 399 400 4m 402 403 404 408 406

Sampled Capacitor Voltage v,
(¢)

Figure 5: Quasiperiodic behavior obtained after the sys-
tem undergocs a Hopf bifurcation. (a) Time domain wave-
forms. (b) the orbit in the state plane, (c¢) Poincaré section
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Figure 6: The switching instants during one switching
cycle and their associated matrices ®; and vectors U;

e Configuration (OFF,ON). During this configura-
tion, the capcitor is charged while the inductor is
discharged. The system matrix A and vector B
for this configuration are

() (2) o

¢ Configuration (ON,ON). During this configura-

tion, the capcitor charge is maintained and the

inductor is charged. The system matrix A and
vector B for this configuration are:

)

,% 0 VLin
AQ(O 0)’32( 0

e Configuration (ON,OFF). During this configura-
tion, both capcitor and inductor are discharged.
The system matrix A and vector B for this con-

figuration are
) @

k1 Vin
° -0 3 0

During the fourth sub-interval, the system uses the
same matrix and vector A5 and Bs. Then we have
A4 = Ag and B4 = Bg.

The discrete time approach is based on strobo-
scopic sampling of the state variables at the begin-
ning of each switching cycle. The consecutive states
ZTnt1 = z((n+1)T) and z, := x(nT) must be related
by a two dimensional map P, i.e zp11 = P(z,). The
aim of this scction is to obtain the analytical expres-
sion of such a map. When the multilevel DC-DC buck
converter is working for duty cycle greater between
0.5 and 1, it switches between three different configu-
rations during four subintervals (Fig. 6). These are:

T=Az+ B for € [nT,nT + 7p 1]

= Agz+ By for € [nT+ 1,01 + %]
= Asz+ B3 for € [nT+ %,nT+Tn72]
= Asx+ By for € [nT + 1h9, (n+1)T

(4)

where 7, ; (i = 1..2) are the switching instants within
the switching period. z is the vector of the state vari-
ables and A; and Bj are the system matrices during
phase k (k = 1...4). As it was already mentioned, dur-
ing each sub-interval the system equations are linear
and time invariant. In this case, the solution during
each phase interval is available and takes the following
form:

t
z(l) = eA(tftk)a;(Lk) +/ A=) Bla (5)
ty
where #j, is the instant at which the system switches
from one configuration to another, z(#;) is the state
vector at the switching instant ¢, . The switching func-
tions can be expressed as the difference between the
amplified error signals e; and the ramp signal vramp,i,

il.e:

U(xq t) = 61(t) — Uramp,i (t) (6)

The system switches from one configuration to another
whenever this switching function crosses zero. There
are mainly two switching instants to be determined
from the switching fucntion while the third one is al-
ways fixed to T//2. In order to construct a generalized
map, let us write Eq. (5) in the following form for
convenience.

@(tftk)x(tk) +‘If(t7tk) = d)(t, tk) (7)

where ®(1) = ! and W(¢ f A=) Bda. The
mapping that relates the state variables Zy at the be-
ginning of an entire cycle to z,, 1, those at the end of
the same cycle, can be build in the following way:

() =

P:R?~ R?
Ty = Tpy1 ' — (xn) (8)
— ¢1(7—n 1 xn) d) % Tn, (Tnyl))o '

Saima T a(E)) aba(T - s a(ra)

The general switching equation may be written in the
following form:

. 0'1(177,77—77, 1)
0'(1137177—71) T |: 0-2(:1:,,“7'71:17—71,27)

Kl (¢)1(Tn,17 Cl:n)) - Uramp(Tn,l)
= K2(¢3(7n,2 - % ¢2(€ - Tn,l)a ¢1(Tn,1, In))

7vramp(§ - 7—71,2)

|0
-5
9)
where K; = (k;,—k,) and Ko = (k;,k,). The map
(Eq. (8)) and the constraint (Eq. (9)) define the
discrete-time model for the multilevel DC-DC buck

converter under the PWM control. The stability of
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the nominal periodic orbit of the system can be stud-
ied by analyzing the stability of the fixed points z* of
the map P. Thses can be obtained by enforcing the
periodicity: z, = .41 z*. In doing so, z* can
be expressed in terms of switching times and system
matrices . The obtaining of the fixed point z* re-
quires solving a transcendental equation o(7*) = 0.
Therefore a root finding algorithm should be applied.
Once the fixed points are located, their stability anal-
ysis may be carried out by studying the local behavior
of the map P near these fixed points. Denoting x,, —z*
by Z, and noting that by definition P(z*) = z*, the
linearized map can be written as:

Zpp1 = DP(x*), (10)
where DP(z*) is the Jacobian matrix of P. The
eigenvalues \; of DP give the amount of expansion
or contraction near the fixed point * when the map
is once iterated. Therefore they determine the sta-
bility asymptotic of the fixed point and hence of its
underlying periodic orbit.
stability is that all characteristic multipliers lie inside
the unite circle. The expression of the Jacobian matrix
DP evaluated at the fixed point is

A sufficient condition for

P

op  oP om,
Oz,

DP(a) or, Ox

(11)
=+
By implicit derivation using the implicit function the-
orem we get:

P  OP [ 9o\ ' do

oy,

z* z*

By calculating each term in Eq. (12) using Eq. (8)
and Eq. (9), DP can be obtained in a straightforward
manner. Details are omitted here for limited space.

5. Results of Stability Analysis Using the Ja-
cobian Matrix

Power electronic systems are usually characterized
by having complex eigenvalues. As a parameter is var-
ied a pair of complex conjugate eigenvalues can leave
the unit disc. In this case the system is said to undergo
a Hopf bifurcation. As a result, a periodic orbit bifur-
cate to a torus. In the corresponding discrete time
system a Neimark-Sacker bifurcation which causes a
fixed point to bifurcatc to an invariant closed curve.
The multilevel DC-DC buck converter is a two dimen-
sional system being able therefore to have a pair of
complex eigenvalues. Figure 7 shows the evolution of
the eigenvalues of the Jacobian matrix evaluated at the
fixed point of the discrete time model of the system
when k; and [,er are varied. The current loop gain is
increased until the stability of the system is lost. This
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Figure 7: Evolution of the eigenvalues of the Jacobian
matrix when k; and [e¢ are varied

was repeated for three values of the reference current
which are indicated in Fig. 7. It can be observed that
for a fixed value of the reference current I.., as the
current loop gain is increased, two complex conjugate
eigenvalues leaves the unit circle indicating that a Hopf
bifurcation occurs at a critical value k; .., which de-
crease as ;¢ is increased. For [,..; — 24 A, the critical
value of the feedback coefficient k; .y = 0.86 A. This
value agree well with bifurcation diagram of Fig. 4.
Theses results allow to obtain accurately the stabil-
ity boundary in the design parameter (k;, I er). This
boundary is plotted in Fig. 8. The result of this figure
match well with the simulation of the circuil by using
the switched model.

Another type of bifurcations that can undergo this
system is the well known period doubling bifurcation.
This behavior corresponds to the case when an eigen-
value crosses the unite circle from the point (-1,0) as
a parameter is varied. Border collision bifurcations
arc also obscrved by numcrical simulations and they
are due essentially to the change of operating mode.
The detailed phenomena observed in this circuit will
be present in a further study.

Conclusions

This paper presented a systematic way to obtain the
discrete time model of a high voltage multilevel DC-
DC buck converter. This model can be used to study
accurately the stability of the system. Based on this
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Figure 8: Boundary between stable and unstable region
in the design parameter (I;cf, k; )

study, the boundary between the stable and the unsta-
ble region can be obtained. The stability region is de-
termined by analyzing the eigenvalues of the Jacobian
matrix of the stroboscopic Poincaré map. Two design
parameters are varied and it was obtained that as the
current loop gain is increased, the system loses stabil-
ity by a typical Hopf bifurcation. The same behavior
is obtained when the reference current is decreased.
The results on the stability analysis by using the Jaco-
bian matrix are confirmed by time domain simulations,
phase plane trajectories, Poincaré sections and bifur-
cations diagrams obtained from the switched model.
Future work will deal with the study of other nonlinear
phenomena in this circuit which were already detected
like period doubling and border collision bifurcations.
Experimental confirmation is also the subject of fur-
ther study.
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