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Abstract— In this paper, we consider a new methodology to
obtain a Pulse Width Modulated (PWM) signal encoding an over-
sampled sinusoidal waveform for single-phase inverter drives.
More specifically, the obtained switching pattern is optimum in
the sense that it minimizes the spurious harmonic power within
a certain band when subject to two constraints: a finite time-
resolution and a maximum switching frequency. The first con-
straint is necessary when the inverter drive control is implemented
by a digital system (i.e. a micro-controller unit), while the second
one assures a minimum duration of each phase of the driving sig-
nal.

Due to these constraints, traditional analysis tools for PWM
control technique cannot be applied. We will give a detailed de-
scription of the novel encoding scheme, and we will compare
its performance, in terms of spurious harmonic power, with the
ones obtained with traditional modulation schemes based on the
methodology reported in [1].

1. Introduction

It is generally recognized [2] that optimized PWM switching
pattern computations can offer a significant improvement in the
performance of single-phase full bridge inverters, used in tradi-
tional power conversion schemes. Programmed PWM techniques
optimize a particular objective function in order to obtain har-
monics minimization or elimination [3]. It is worth noting, that
the objective function is chosen to generate an optimal switch-
ing pattern, which minimizes unwanted harmonic effects (due to
the switching process) at the inverter output. To cope with the
difficulties of calculating the optimal switching instants, the opti-
mized PWM patterns are commonly developed off-line [1, 4], by
applying minimization techniques to a set of non-linear equations.
The optimal switching pattern are then stored in a non-volatile
memory to preprogram a micro-controller unit, which is used for
on-line generation of the PWM at real time.

One of the main problems of these approaches is that the se-
quence generation rely on an infinite time resolution, i.e. it is
assumed hat every switching instant can be set with infinite pre-
cision along the time axis This is obviously not achievable in any
practical application. As an example, in motor control systems
the whole control circuitry is implemented by a micro-controller
core, which, generally, has only a finite time resolution equal, at
best, to its system clock period. The paper is organized as follows:
in section 2 the classical methods of harmonic elimination are re-
viewed, in section 3 the spectral effects of finite time resolution
over these methods are analytically evaluated and a numerical ex-
ample is presented. Finally, in section 4 a new approach to find
an optimal switching pattern is presented and a numerical exam-
ple that shows the spectral improvement over classical methods is

also reported.

2. The Classical Solutions

Due to the high industrial relevance, many researchers attempt
to give the optimal solution for single phase drives switching pat-
tern. The original idea is to fix the exact number of switch n per
sinusoidal period and to find, through Fourier analysis and solving
a set of nonlinear equations, the optimal position of the switching
angles αi for each transition. The quarter wave symmetry of the
PWM waveform is also assumed for the switching angles, i.e.

αi =

8>>><
>>>:

αi if 0 ≤ i ≤ n/4 − 1

π − αn/2−1−i if n/4 ≤ i ≤ n/2 − 1

π + αi−n/2 if n/2 ≤ i ≤ 3n/4 − 1

2π − αn−1−i if 3n/4 ≤ i ≤ n − 1

(1)

The flavor of these methods is as follows. First, the switching
sequence, that is assumed to be periodic with period Ts, is ex-
pressed into Fourier series. Due to the constraint (1) the Fourier
series of the switching pattern contains only the sin(·) terms and
all the even harmonics are null. With this, s(t) could be written
as

s(t) =

∞X
k=0

s2k+1 sin(2πkfst) (2)

where the coefficients sk may be obtained through Fourier analy-
sis

sk =

(
0 if k even
4

kπ

`
−1 + 2

Pn−1
i=0 (−1)i cos(2πkfsαi)

´
if k odd

(3)
So, considering only the first n/2 harmonics, the traditional PWM
harmonic elimination techniques are grounded on the possibility
to find a suitable combination of {α0, α1, . . . , αn/4−1} to force
the first odd n/4 − 1 harmonics to vanish, except for the first
one that is constrained to a prescribed value. In other words, they
attempt to solve the set of n/4 nonlinear equations:8>>>>>><
>>>>>>:

cos(2πα0) − cos(2πα1) + . . . − cos(2παn/4−1) = Aπ+4
8

cos(6πα0) − cos(6πα1) + . . . − cos(6παn/4−1) = 1
2

· · ·

cos((n − 2)πα0) − cos((n − 2)πα1) + . . .

− cos((n − 2)παn/4−1) = 1
2

(4)
where A is the amplitude of the sinusoidal tone that ideally feeds
the motor drive. Several methods have been proposed in the liter-
ature to solve (4). To carry out the comparison between traditional
harmonic elimination techniques and our algorithm, we will refer
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to the method proposed in [1], which is based on the computation
of the roots of a single univariate polynomial of degree n/4 − 1,
and it is very efficient in solving (4) for large n.

2.1. Example

An example of the results obtained by the application of the
traditional methods for harmonic elimination is shown in figure 1.
The parameters value for the example are: n = 8, i.e. the number
of switch in a quarter of period, fs = 50Hz, and A = 0.6V. The
switching waveform is shown together with the signal retrieved
by means of an ideal low pass filter with cutoff frequency B =
800Hz. As expected, the output signal is a pure sinusoidal tone,
with the same amplitude of the encoded one, because all the in-
band spurious harmonics are null.
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Figure 1: Harmonic Elimination Example.

3. Effects of Finite Time Resolution in PSD

Whenever a two level PWM signal is implemented by a DSP, a
problem of temporal resolution arises. In other words, the switch-
ing instants of the PWM waveforms are constrained to be at in-
teger multiples of the digital clock period. This situation is high-
lighted in Figure 2. Note that theoretically, s(t) has no constraint
on switching instants, while its digital implementation u(t) has
switching instants that are “hooked” to the ones of the digital
clock. The vertical arrows represent the time series of the con-
strained switching process, which is clearly equivalent to peri-
odically sampling s(t) with a period equal to the clock period
∆t. The upward arrow represents a “+1” sampled value, while
a downward arrow represents “-1” sampled value. Finally, the
PWM signal with quantized switching instants u(t) may be ob-
tained by convolving the time series with g(t) the unit pulse of
duration ∆t. Following the steps suggested by Figure 2, we eas-
ily find:

u(t) =
∞X

k=−∞

s

„
(k +

1

2
)∆t

«
g(t − k∆t) (5)

Now, we want to quantify the effects of finite time resolution
on the power spectrum density of the optimal switching patterns
generated by the traditional harmonic elimination schemes. First,
if we consider that the two level waveform (2) is written as an

s(t)

s(k∆t)

u(t)

Figure 2: Quantization of switching instants due to finite time
resolution.

infinite summation of properly weighted sinusoidal tones, it is
straightforward to find the expression of the PSD of Ss(f) [5].
Exploiting the orthogonality of the sinusoidal tones at different
frequencies, we obtain:

Ss(f) =
∞X

i=−∞

|si|
2

4
δ(f − ifs) (6)

where δ(·) is the Dirac Delta distribution.
We are interested in the relation between Ss(f) and Su(f),

i.e. the PSD corresponding to the deterministic signal u(t). To
simplify the analysis we constraint the number of pulses inside a
period of the fundamental tone, N , to be an integer. In formulas
N = 1

fs∆t
∈ N, where N is the set of integers. In this case,

the deterministic signal u(t) will inherit the periodicity of period
1/fs by the original signal s(t), and will be completely described
by the coefficients ui of its Fourier series. Hence, we have to
find the relation between the coefficients si in equation (3) and
the coefficients ui. It may be shown [6] that, under the above
described conditions, ui has the following expression

ui = sinc

„
π

i

N

«
1

N

N−1X
k=0

s

„
k + 1/2

Nfs

«
e−i 2π ik

N (7)

where sinc(·) = sin(·)/(·). Expanding the sampled values in (7)
as

s

„
k + 1/2

Nfs

«
=

∞X
n=−∞

sn

2i
ei 2πn

i+1/2

N (8)

and substituting (8) in (7), after some straightforward calculation
we find the relation that links si and ui, i.e.:

ui = sinc

„
π

i

N

« ∞X
h=−∞

shN−i

2i
ei π hN−i

N (9)

where the summation indicates the aliasing folding effect, in
agreement with the sampling theory [5]. With this, the PSD of
u(t) may be easily calculated as:

Su(f) =

∞X
i=−∞

|ui|
2 · δ(f − ifs) (10)

3.1. Example

In this subsection we show an example of the effects of finite
time resolutions on the PSD of the retrieved signal at the low pass
filter output. We set n = 8 (the number of odd eliminated har-
monics), fs = 50Hz, and A = 0.6V. The switching waveform
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is shown together with the retrieved one by means of an ideal low
pass filter with cutoff frequency B = 800Hz, while the time res-
olution is ∆t = 39µs. The time domain waveforms are shown in
figure 3, where the in-band harmonic distortion is evident. This is
because the out-of-band harmonics, which have been eliminated
with the traditional methods, are folded back in-band according
to equation (9). To highlight this, the PSD of the waveform in 3 is
shown in 4. With this set of parameters, the harmonic distortion
in the band B is 539µW .
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Figure 3: Effects of finite time resolution on the output waveform.
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Figure 4: PSD of the finite time resolution waveform.

4. A Different Approach

We want to approximate an analogic sinusoidal signal f(t),
that represents a motor drive control signal, with a low-pass fil-
tered version of a two level ({−1, +1}) signal s(t), that rep-
resents the switching control signal of the single-phase inverter
drive. To keep into account finite time resolution, its switching
instants are assumed to be constrained at integer multiples of ∆t,
i.e. a suitable multiple of the micro-controller system clock. The
ideal signal that should drive the motor is

f(t) = A sin(2πfst) (11)

where A is the amplitude control parameter, and fs is an assigned
frequency (typically 50 ÷ 60Hz of the electricity grid). The two-
level function s(t), whose filtered version will approximate f(t),
may be written in the form

s(t) =
∞X

i=−∞

xig(t − i∆t) (12)

where g(·) is the unit pulse of duration ∆t and xh are binary
valued {−1, +1}. Our aim is to find the combination of the co-
efficients xi’s that assures the best approximation according to a
given optimality criterion, that will be exposed below. Further-
more, we introduce a constraint on the ratio between Ts = 1

fs

and ∆t, i.e. we consider Ts
∆t

= N ∈ N. Under this condition, one
may easily verify that s(t) inherits the periodicity property from
f(t), with the same period Ts. With this, we may consider (12)
as the periodic repetition of any piece of s(t) constituted by N
symbols, i.e. we may rewrite as s(t) =

P
∞

k=∞

PN−1
i=0 xig(t −

i∆t−kN∆t), and, exploiting the periodicity of period N∆t, we
obtain

s(t) =
N−1X
i=0

xi

∞X
k=−∞

gkei 2πk 1
N∆t

(t−i∆t) (13)

where gk = 1
N

sinc(πk
N

)e−i
πk
N .

Now, the switching signal s(t) is low-pass filtered with an ideal
filter with cutoff frequency B. Hence, the low-pass filtered output
slp(t) may be written

slp(t) =
N−1X
i=0

xi

KX
k=−K

gkei 2πk 1
N∆t

(t−i∆t) (14)

where K = � B
fs
� keeps only the harmonic content of the signal

in the band [−B, B]. We note that (14) has a similar form to (13),
and the only difference is the inner summation limits.

Let us now define the time domain error function after the low-
pass filter as εlp(t) = f(t)−slp(t), that is the difference between
the ideal output signal and the actually retrieved signal in the time
domain. The minimization of the power of εlp(t) is chosen as the
optimization criterion. Some long though straightforward calcu-
lations show that εlp(t) may be written as

εlp(t) =

KX
k=−K

ei 2πfsht

"
fk − gk

N−1X
h=0

xhei 2πkfsh∆t

#
(15)

where fk = ± A
2i

if k = ±1 are the Fourier series coeffi-
cients of (11), and zero for any other index k. Defining x =
{x0, x1, . . . , xN−1} as the vector of N binary symbols xi, the
power of εlp(t) is a function of x: P (x) = 1

Ts

R Ts

0
ε2lp(t)dt.

Carrying out the calculations and recalling the orthogonality of
ei 2πfsh1t and ei 2πfsh2t for h1 �= h2, one finds:

P (x) = F + x
T Qx − 2LT

x (16)

where

F =
P

k=±1 |fk|
2 = A2

2

qi,j =
PK

k=−K |gk|
2e−i 2π(i−j) k

N

li = Re
hPK

k=−K gkf∗
k e−i 2πi k

N

i
.

In order to reduce high frequency switching losses, the number of
swticthing inside the binary sequence pattern x has to be limited
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to a proper value n, exactly as it is in the traditional harmonic
elimination methods. In formulas:

1

2

N−1X
k=0

|x[k+1]N − xk| =
1

4

N−1X
k=0

(1 − x[k+1]N · xk) = n (17)

where [·]N is the modulo-N operator, that keeps into account the
periodicity of the output sequence.

Finally, since N represents the number of pulses inside a si-
nusoidal period Ts, and we are interested in solving the problem
with N ≈ 500 (that is an acceptable time resolution for motor
drive application), we have to reduce the problem complexity to
perform off-line calculations of the optimal sequence. For this
purpose, we may rely on the fact that the optimal pattern xopt has
to represent a sine wave. Hence, owing to the sine wave quarter
period symmetry, a quarter period symmetry for the sequence x

follows as well, assuming that N/4 ∈ N. In other words, the
symmetry relation for the symbols xi in (12) may be written as

xi =

8>>><
>>>:

xi if 0 ≤ i ≤ N/4 − 1

xN/2−1−i if N/4 ≤ i ≤ N/2 − 1

−xi−N/2 if N/2 ≤ i ≤ 3N/4 − 1

−xN−1−i if 3N/4 ≤ i ≤ N − 1

(18)

So, the optimal switching sequence is the one that minimizes
equation (16), subject to the constraints (17) and (18) for any fixed
N and n. Note that the solution of such a minimization problem is
an NP-Hard problem (in the dimension of N/4), i.e. it is intrinsi-
cally harder than those that can be solved by a Turing machine in
polynomial time. In other words, the computational time to solve
the problem grows exponentially with N/4. For this reason, we
implemented an efficient backtracking branch-and-cut algorithm
[7] that, making extensive use of FFT, finds xopt for N/4 ≈ 250.

4.1. Example

In this subsection we show an example of the previously de-
scribed method to generate an optimal switching pattern, and
we analyze the spectral properties of the retrieved signal at the
low pass filter output. To make a fair comparison with the
spectral properties of time quantized classical sequences, we set
n = 8, fs = 50Hz, and A = 0.6V. The time resolution is
∆t = 39µs.The switching waveform is shown in figure 5 to-
gether with the retrieved one beyond an ideal low pass filter with
cutoff frequency B = 800Hz. The PSD of the periodic wave-
forms is shown in 6. With this set of parameters, the harmonic
distortion in the band B is 133µW . So, this new technique ex-
hibits an improvement of 6dBW in terms of spurious harmonic
power, compared with the classical harmonic elimination tech-
niques with time quantized switching instants.
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